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Robust concept development utilising artificial intelligence and machine learning
An explorative study
HUGO ALFGÅRDEN
KEVIN KARLSSON
Department of Industrial and Material Science
Chalmers University of Technology

Abstract
The 80-20 rule suggests that design decisions significantly impact downstream ef-
fects, such as product cost, with many of these decisions made during concept gen-
eration. This early commitment limits the ability to make changes later in develop-
ment. Early-stage design requires a variety and quantity of concepts, but designers
often fixate on existing designs, limiting innovation. In the aerospace industry,
the complexity of concept development and evaluation is particularly challenging.
Therefore, this study seeks to explore how AI/ML methods can aid designers in the
concept development process.

This thesis was initiated as a results of a 2023 internship at GKN Aerospace, which
involved generating a concept for the sectioning and manufacturing of an existing
part. Recognizing the intricacies of these phases, the authors explored the potential
of AI/ML methods to enhance robustness in concept generation and evaluation.

The aim is to evaluate how GKN Aerospace can effectively integrate AI and ML into
their product development workflows. This involves understanding current method-
ologies and identifying gaps to address before implementation. The focus is on
leveraging AI and ML to streamline complex decision-making processes, ultimately
providing actionable insights for robust, efficient concept design aligned with the
Zero Defect paradigm in aerospace.
Additionally, the thesis identifies gaps in the organization that needs to be address
before a possible integration, such as data quality and data secrecy.

The result, building on extensive interview studies and literature studies is that there
is potential in incorporating AI/ML in concept development processes. Although,
AI methods such as LLMs, still have limitations, including confidently producing
incorrect results, a phenomenon known as hallucinations.

The conclusion is that Generative AI, design tools with integrated AI/ML meth-
ods, and LLMs still offers opportunities to simplify concept generation. LLMs can
assist with ideation, creative reasoning, and cognitive task offloading. Fine-tuned
LLMs, trained on internal documentation, provide instant feedback on less complex
tasks, helping designers explore a broader design space, mitigate bias, and enhance
knowledge, facilitating the development of robust design solutions.

Keywords: Product Development, Concept Generation, Concept Evaluation, Set-
Based Design, Artificial Intelligence, Machine Learning
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1
Introduction

In this chapter, an introduction to the master thesis is presented.

1.1 Background
Performing engineering analysis is a critical component in the decision-making pro-
cess, offering a systematic approach to solving complex problems and ensuring op-
timal solutions. By utilizing simulations, models, and empirical data, engineers can
predict the performance and behavior of systems under various conditions. This pre-
dictive capability allows for informed decision-making, enabling engineers to evaluate
potential outcomes, identify risks, and optimize designs before implementation. As
a result, engineering analysis enhances project efficiency and effectiveness while sig-
nificantly reducing the likelihood of costly errors and failures.

Furthermore, reviewing the reports from such analysis is the foundation for critical
decisions, and any inaccuracies or omissions can lead to significant consequences. A
thorough review process ensures that all assumptions, methodologies, and results
are scrutinized and validated, thus enhancing the credibility of the findings. This
process often involves cross-disciplinary collaboration, where experts from various
departments within the organization, provide insights and identify potential issues
that may have been overlooked. In general, engineering analysis and the metic-
ulous review of its reports are crucial for informed, reliable decision-making and
the advancement of engineering practices. This process is complex, thorough and
time-consuming, and this process at GKN Aerospace is certainly no exception.

1.1.1 Introduction to GKN Aerospace
GKN Aerospace is a top-tier global provider specializing in airframe and engine
structures, landing gear, electrical interconnection systems, transparencies, and af-
termarket services. They deliver products and services to a diverse array of com-
mercial and military aircraft and engine manufacturers, as well as other primary
suppliers. They are present in 12 countries, employing about 16 000 employees.
In total, they have 32 manufacturing locations, where a large part of their work-
force is based in Europe (GKN Aerospace, 2024a). This study is focused on GKN
Aerospace Sweden (GAS) with head office in Trollhättan and about 2000 employees
(GKN Aerospace, 2024c).

1



1. Introduction

GKN maintains strong partnerships with all the leading engine, airframe OEMs and
their primary suppliers (GKN Aerospace, 2024d). Since 1930, GKN Aerospace has
been consistently delivering advanced engine components to the worlds airplanes
and rockets (GKN Aerospace, 2024b). In fact, their engine components exist in over
90% of the worlds passenger planes.

1.1.2 Aerospace Product Development
With their strong knowledge in product development, GKN Aerospace enable the
creation of highly durable and complex products with long operational durations
under high stresses, while ensuring both safety and performance. As a result, the
lead time for developing products in aerospace is rather long, typically 5-10 years
(Rabie Jaifer & Bhuiyan, 2021). Therefore it is interesting to see how these pro-
cesses can be optimized and made more effective by utilizing artificial intelligence
(AI) and machine learning (ML) tools.

At GKN Aerospace, an update of working methods aimed at achieving Zero Defect
is underway. In this thesis, the goal is to investigate where the bottlenecks and gaps
are in order to conduct Set-Based Concept Design studies in our Product Develop-
ment. Here, concepts, features, and design parameters are varied at an early stage,
and the understanding of how technical specifications can be fulfilled in the final
product needs to be explored. When making these decisions, AI and ML solutions
are sought to simplify the complex process of decision-making in design.

1.1.3 Summer Internship
The authors conducted an internship in the summer of 2023, which inspired the
research topic and shaped the problem definition for this thesis. The assignment in
question was related to concept generation and evaluation for the sectioning of an
existing product that GKN produces. No initial information was given other than
finding different ways of dividing the existing product, into smaller parts. A lot was
thereby open and much up for own interpretation of how to go about this problem.

Initially, information was gathered from around the company about the consider-
ations necessary for performing such a sectioning and later welding the sectioned
pieces together. Without a specification sheet and with little to no prior knowledge
of this type of technology, advancing the work was challenging. The information was
gathered mostly through expert interviews and internal documentation, which even-
tually was compiled as several factors to consider, requirements and "no go zones".

Based on all compiled information, a brainstorming session were performed in order
to come up with as many theoretical ways of sectioning the product as possible.
The thought process were guided by "out of the box thinking" and no concept were
initially considered too obscure. The different ways of sectioning were documented
and afterwards, an initial non-structured elimination were performed in order to rule

2



1. Introduction

out concepts indicating low potential for success.

The summer internship was conducted over an eight week period and during this
included information gathering, concept generation and evaluation. The concept
generation consumed the majority of the time, yielding over 40 different concepts of
sectioning the product. The sectioning of the product, were performed in the CAD-
program NX, in order to visualize the different concepts and to understand how
certain ways of sectioning, would interfere with different interface on the product.
The different concepts were documented in a concept catalogue. This phase was the
lengthiest, estimated at five weeks.

1.2 Problem Discussion
During the summer internship, we found that there are in fact a large amount of ways
for sectioning the product and thereby concepts to consider. For each new concept,
small adjustments could be made to the sectioning, making a another completely
new concept. Cuts could be offset 0.001 mm or angled 0.001 degrees different, for
example. We found that product development can be very complex and how can
we find the best one and verify that it is the best when there are so many different
factors to consider. Striving to fulfil one requirement often led to us moving further
away from fulfilling another one. In addition, this was only considering the differ-
ent factors we had found to be important. In real full scale product development
projects, there are a substantial amount of additional factors to consider, making it
a lot more complex.

The concept evaluation utilized elimination matrices, Pugh matrices, and Kesselring
matrices to rank the different concepts by criteria. This criteria-based ranking was
a tedious process and took about three weeks. We found that it could sometimes be
complex to rank certain concepts as they sometimes were very similar. It was hard
to say one was better than the other, with complete certainty.

During this process, we found ourselves wishing for a program capable of generat-
ing concepts based on a prompt and a specification sheet, a program fine-tuned on
aerospace specific data able to help with ideation, concept generation, and concept
evaluation. This, because the task proved time-consuming, requiring considerable
consideration. This, because a majority of important considerations was niched
to aerospace specific material, components and ”know-how” that was necessary to
know in order to successfully.

With all the new AI-support emerging and already available, we thought the area
of concept generation and evaluation had the potential to be improved and more
efficient by implementing AI-support. With the new surge of interest and improve-
ment in AI/ML methods, and specifically large language models, we thought that a
large amount of the work we had done could be automated and more efficiently done.

At present, the problem to be investigated is that the amount of labor intensive

3



1. Introduction

work to derive data with sufficient quality in limited time is a limiting factor during
product development. Furthermore, The idea to explore is how to make use of recent
advancements in AI and ML to aid in the process of robust concept development at
GKN Aerospace.

1.3 Aim & Research Questions
The overarching purpose is to evaluate how GKN Aerospace can effectively incorpo-
rate AI and ML into their product development workflows. The investigation will
focus on comprehending the existing methodologies and best practices employed for
finding robust concept solutions. The emphasis lies in exploring the potential of AI
and ML to streamline and simplify the complex decision-making processes inherent
in concept generation, and evaluation. The ultimate goal is to provide actionable
insights and recommendations for leveraging AI and ML effectively in the pursuit of
robust and efficient concept design solutions aligned with the Zero Defect paradigm
in aerospace. In specific, the thesis aims to answer the following questions:

• RQ1: What are the main challenges when performing concept generation and
evaluation?

• RQ2: What are the gaps that are needed to be filled for a successful imple-
mentation of AI/ML methods to improve robust conceptual design work at
GKN?

• RQ3: What are GKN’s current AI/ML capabilities?
• RQ4: How can tools from AI and ML be used to simplify concept generation,

evaluation and to propose a robust design solution?
• RQ5: What AI based methods have a potential to improve robust conceptual

design work at GKN and what are their limitations?
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1. Introduction

1.3.1 Objectives
The report wishes to perform a benchmarking study to investigate the following
main points:

• Gain access to current state of the art of AI implementation in industry, and
compare this to where GKN currently stands

• Learn from other organizations motivations for implementing AI.
• Learn from others lessons learned from companies being successful/unsuccess-

ful implementing AI.

1.4 Delimitations
• Any AI/ ML model presented in this report will not be trained on company

specific data from GKN.
• The thesis will not construct or design new AI/ML models.
• GKN Aerospace has a substantial amount of sensitive and confidential data.

Consequently, the recording of interviews may not be feasible due to the critical
importance of avoiding spreading of sensitive information beyond the company.
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2
Theory

In this chapter the underlying theory is presented.

2.1 Product development process

(Ulrich & Eppinger, 2016) presents a widely recognized approach to a general prod-
uct development process (PDP). According to their definition, a product is an item
that an enterprise sells to its customers. Before products can be sold and delivered,
they must first be designed and manufactured. Thus, product development encom-
passes all activities from identifying a market opportunity to the production, sale,
and delivery of a product. At GKN, the view of Ulrich and Eppinger (2016) process
exist on a high level indeed.

An Engineering Design (ED) process proposed by (Beitz et al., 1996) (see Figure
2.1), which is a process with an foundation in specifically mechanical engineering
tasks and how to solve problems.
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Figure 2.1: The ED process according to (Beitz et al., 1996)

Organizationally, GKN’s model is much driven by the overarching phases common
in aerospace PD. The aerospace PDP follows the stage-gate review model introduced
by (Cooper, 1990). This model treats product innovation as a structured process
that can be managed effectively. Like a manufacturing production line, the process
is divided into distinct stages, each concluding with a gate. Each gate serves as
a quality control checkpoint. To move to the next stage, the product must meet
a specified set of deliverables and quality criteria at each gate. This structured
approach helps focus on improving the process itself to enhance the quality of the
output. The stages are dedicated to specific work, and the gates ensure that the
quality is sufficient before moving forward.

2.1.1 Concept Development
The design process constitutes a series of technical activities within a product de-
velopment process aimed at fulfilling the vision outlined by marketing and business
strategies. It involves refining the product vision into technical specifications, devel-
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oping new concepts, and conducting embodiment engineering of the new product.
Companies can innovate by either acquiring existing brands or initiating new prod-
uct development within their own research and development departments. (Kotler
et al., 2005) defines new product development as ”the creation of original products,
improvements, modifications, and new brands resulting from the firm’s own R&D
activities.”

GKN adheres to the conceptual design approach depicted in (Beitz et al., 1996) and
incorporates Set-Based Engineering. This phase focuses on generating a range of
broad solutions without committing to specific details initially. It includes breaking
down the product into its fundamental functions, exploring various ways to fulfill
these functions, and integrating these functions into working principles that dictate
how the product will operate. Subsequently, the most feasible, innovative, and
effective conceptual solutions are evaluated and selected.
In this report, the viewpoint that concept development entails generating multiple
solutions and alternatives to solve a given problem, with the objective of reducing
risk to invest in the effort to detail and define a product (Set-Based vs Point based)
is taken.

2.1.2 Robust design
Products may deviate from intended designs due to variations in engineering pro-
cesses. Robust design in industrial engineering aims to enhance product quality and
reliability by minimizing such deviations (Park et al., 2006). GKN Aerospace aims
for Zero Defects (ZD), the main idea behind the ZD manufacturing concept is not
defects and faults detection, but rather faults and defects prediction and provision
of suggestions on how those can be avoided. This can be achieved through a combi-
nation of Smart Inspection Tools, CPS, Data Analysis, and Knowledge Management
tools, as well as Digital Twins (DT) (Nazarenko et al., 2021).

The term ”robust design” has various definitions. (Taguchi et al., 2000) defined it as
the state where the performance of technology, product, or process is minimally sen-
sitive to factors causing variability, such as manufacturing or environmental factors,
and aging, while maintaining the lowest possible manufacturing cost. (Suh & Suh,
2001) defines it as meeting functional requirements despite design and process vari-
able tolerances. These definitions emphasize designing for insensitivity to variations.

Robust design theories, including the statistical Taguchi method, robust optimiza-
tion, and axiomatic design, have evolved from existing design theories. They aim to
make product performance insensitive to manufacturing process noises and uncer-
tainties, especially in conceptual design (see Figure 2.2) (Park et al., 2006).

The significance of reducing variation in product characteristics was recognized early
in Japan. Japanese engineer Genichi Taguchi’s ideas were known in the 1940s
(Arvidsson & Gremyr, 2008). He proposed a three-step strategy for product de-
velopment: system design, parameter design, and tolerance design, emphasizing
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Figure 2.2: Product and process with inputs: Target value (m), Noise factors (z),
Design variables (b) resulting in Response (f). (Park et al., 2006)

experimental methods in the latter two steps.

(Arvidsson & Gremyr, 2008) expands on Taguchi’s framework, introducing terms
like ”robustness” and ”robust design” and highlighting various methods to achieve
robustness in engineering. It explains the fundamental challenge of variation in qual-
ity production and cites (Goh, 1993) emphasize the detrimental effects of variability
and how important it is to reduce.

Noise factors, often labeled as external, internal, or unit-to-unit noise, are difficult
and expensive to control (Taguchi et al., 2000). According to (Phadke, 1995), since
noise factors cannot be easily controlled, designing for insensitivity to these factors is
preferred over their elimination. (Taguchi et al., 2000) states that a design is robust
when it is minimally sensitive to variability and aging at the lowest manufactur-
ing cost. (Arvidsson & Gremyr, 2008) suggests this can be achieved by identifying
factors that result in a more robust product or by redesigning the product. (An-
dersson, 1996) emphasizes that achieving robust design requires a wise choice of
concept, using methods like adapted failure mode and effect analysis to account for
noise factors, applying error transmission formulas to evaluate different designs, and
utilizing design rules that contribute to robustness.

Various methods have been developed to support robust design. Variations Risk
Management (VRM), as described by (A. C. Thornton, 2004), serves as an overall
framework for reducing variation from system design to production. Additionally,
Variation Mode and Effects Analysis, proposed by (Johansson et al., 2006), is useful
for variation reduction in concept evaluation and selection phases, and for improving
existing designs.

The robust concept design method developed by (Ford, 1996) involves defining the
robustness problem, deriving guiding principles, synthesizing a new concept, and
evaluating alternative concepts. Other general concepts like robustness and robust
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design, referred to in (Goh, 1993; Gremyr et al., 2003; A. C. Thornton, 2004; A.
Thornton et al., 2000), do not prescribe specific methods for reducing variation like
those related to Taguchi’s work but view robustness as an engineering problem that
can be solved in various ways. These concepts emphasize a product’s characteristic
of being robust, which relates to its insensitivity to variation.

From the robust design literature, the notion that robustness as an engineering
problem is something that can be solved in various ways, together with defining the
robustness problem, deriving guiding principles, synthesizing a new concept, and
evaluating alternative concepts is important to account for in this work. In this
thesis the viewpoint that having more alternatives and solutions reduces the risk of
producing a non-robust design.

2.1.3 Set-Based Design
Set-Based Design (SBD), or Set-Based Concurrent Engineering (SBCE) is part of
GKNs product development. The distinction between SBD and SBCE is that the
term Concurrent Engineering represents a broad industrial development setting in-
volving stakeholders from several organizational functions. SBD is the practical ap-
proach to engineering design following the principles of SBCE (Raudberget, 2015).
The most important idea of Set Based approaches is to work with sets of plausible
solutions, find limitations and constraints until a more narrow feasible design space
can be investigated. For this, the following approach is applied (D. Sobek et al.,
1999):
1. Map the Design Space:

• Define feasible regions.
• Explore trade-offs by designing multiple alternatives.
• Communicate sets of possibilities.

2. Integrate by Intersection:
• Look for intersections of feasible sets.
• Impose minimum constraint.
• Seek conceptual robustness.

3. Establish Feasibility Before Commitment:
• Narrow sets gradually while increasing detail.
• Stay within sets once committed.
• Control by managing uncertainty at process gates.

In PD, the design phase and mapping the design space can be difficult in early project
stages. As knowledge increases though a project and production approaches, design
changes can become expansive. Research points to that the earliest decisions in PD
have the largest impact on the overall quality of the product (effectiveness) and the
overall cost of the project (efficiency). This was first documented by the authors
(Clark, 1991).
Before SBD, the design teams used to iterate on one solution. The term ”Set-Based”
is contrasted with the term ”Point-based” (A. Ward et al., 1995), which describes
the traditional development methodology. This methodology is called ”point-based
concurrent engineering” (D. Sobek et al., 1999). Point-based engineering follows
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the ”do it right the first time” paradigm. Problems with this approach arise when
engineers work concurrently with other team members. As the design is critiqued
by different groups, each change triggers further changes and analysis, leading to
rework and increased communication demands. There is no guarantee the process
will converge, and many engineers report it often does not: the team stops designing
when time runs out. Without a clear picture of the possibilities, the resulting design
can be far from optimal (D. Sobek et al., 1999). Which in turn only is a waste of
effort. In reality, the quality of information available in conceptual design phases
does not allow the optimal design to be defined.

The picture in Figure 2.3 illustrates the process of point-based engineering. Where
every hexagon is a separate activity in the design space.

Figure 2.3: Point-based engineering explained (Toche et al., 2020).

In contrast, when engineering teams use SBD, engineers can agree on a range of
parametric values instead of solidifying a single value at a time. SBD allows design
problems and intricacies to be aligned gradually, offering the best projection (D. K.
Sobek & Ward, 1996). The name is based on the fact that team members bring sets
of possible solutions and compare them to find a practical intersection, rather than
incrementally modifying a single option (Liker et al., 1996). The SBD stages are
illustrated in Figure 2.4.
In short, SBD is characterized by developing multiple solutions to design problems in
parallel, considering sets of design alternatives rather than a specific design. These
sets are gradually narrowed down based on information from customers, manufac-
turing, tests, and other sources, leaving one solution in the end. A “set” represents
different possibilities within the design space, holding multiple versions of elements
with a common denominator, such as a family of design solutions, design variations,
or manufacturing options (Raudberget, 2015).
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Figure 2.4: SBD engineering explained (Toche et al., 2020).

A benefit that comes with performing SBD is that it avoids narrowing down too
quickly on areas of the design space, which, in return, ensures that potential inno-
vation and discovery will not be lost (A. C. Ward & Sobek II, 2014).

2.1.4 Multidisciplinary design optimization
In the figure referenced in 2.4, the rings represent different areas of expertise. At
GKN, Multidisciplinary Design Optimization (MDO) is employed to converge these
diverse fields into a few optimal design solutions. GKN utilizes the Engineering
Work Bench (EWB) program to conduct MDO, where it is possible to automate the
MDO process (Madrid et al., 2021).

Originally, MDO is a mathematically rigorous way to formulate and solve optimisa-
tion problems dependent on multiple disciplines. However, today MDO has taken a
lot of different meanings, for example (Meng, 2022) view MDO as a robust method-
ology for solving complex design problems involving coupled engineering systems
and has garnered significant attention from both industry and academia.

Originally successful in aeronautics and astronautics engineering, the application
of MDO has broadened. Typically, design variables and parameters in MDO are
treated as deterministic inputs. However, in practical engineering scenarios, un-
certainties are prevalent and unavoidable. For instance, the properties of materials,
geometric forms, and external working loads on equipment are all subject to variabil-
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ity. In multidisciplinary systems, this uncertain information can propagate through
the coupling relationships between different disciplines, leading to cumulative ef-
fects that significantly affect system performance and reduce both the reliability
and safety of the system (as depicted in Figure 2.5 & 2.6.

Figure 2.5: A complex system with multiple system levels, multiple disciplines,
and multiple sources and types of uncertainty (Meng, 2022).

Figure 2.6: Uncertainty information sources and their classification (Meng, 2022).

2.1.5 Concept Evaluation
In the early stages of new product development, particularly after product concepts
have been formulated, a critical step involves the evaluation of these design con-
cepts. Proper evaluation is essential as it ensures that customer needs are met and
contributes to the creation of products that genuinely satisfy customers (X. Wei
et al., 2010). However, the concept evaluation phase comes with its challenges. It is
a complex process where sometimes sub-optimal concepts may be initially selected
(Dasari, 2021). This is particularly evident in the design of aircraft components,
where evaluating a vast array of potential design alternatives involves procedures

14



2. Theory

that are not only costly but also time-consuming, thereby hampering the swift iden-
tification of optimal design solutions. It is difficult, and expensive, to derive sufficient
quality of data in conceptual phases, especially if different alternative solutions are
investigated. Thus, finding effective strategies to streamline and enhance the accu-
racy of this evaluation phase is paramount in speeding up the development process
while ensuring the selection of viable product concepts.

To properly evaluate a concept, gathering as much information as possible is de-
sirable. Therefore, analysis and calculations are essential parts of the process. At
GKN, a concept evaluation matrix is used to rank the concept based on its perfor-
mance in certain areas such as risk and cost.

2.2 OMS
The Operational Management System, or (OMS), is a system located on GKN’s
intranet. Here, employees can check what is expected and required for specific tasks.
It is also possible to see which role is supposed to handle each task. In the context of
this report, particular attention is given to the product development workflow, with
a focus on concept development and evaluation. The product development process
is divided into four major phases in the following order:

1. Pre Study
2. Conceptual Design
3. Preliminary Design
4. Detailed Design
5. Final Design

Furthermore, for the purpose of this thesis, the greatest emphasis is placed on the
flow within Conceptual Design. The workflow within Conceptual Design is depicted
in Figure 2.7:

Figure 2.7: OMS process for concept development at GKN.

2.3 Product development methods
In this section, the methods used at GKN to generate robust concepts and evaluate
them are presented.
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2.3.1 Design for X

The Design for Manufacturing (DfM) and Design for Manufacturing and Assembly
(DfMA) methodologies are part of the broader Design for X category. Their pri-
mary objective is to optimize the manufacturing and assembly phases of products
(Formentini et al., 2022). DfX methodologies are employed to enhance particular
aspects of the product in development. The variable ”X” is typically replaced with
the specific aspect that need to be taken into account during design, (e.g. Manu-
facturing, Maintenance, Additive Manufacturing, etc.), and these methodologies are
applied to support Engineering Designers during PD.

2.3.1.1 Design for Manufacturing

Presently, each aerospace design organization has developed their own design rules
(Rajamani & Punna, 2020). The focus lies on improving product design capability
by continuously optimizing. The use of Design for Manufacturing (DfM) or Design
for Manufacturing and Assembly (DFMA) has led to simplifying designs at a lower
cost and higher efficiency.
Previously, the approach to designing products started with an analysis of what
the product was supposed to do, which gave the form and the materials of the
product that are to be made. Thereafter the design was sent to the manufacturing
department to be manufactured (Elwakil, 2019). A process that in theory is very
simple, but in practice had a lot of drawbacks. Some of them where:

• Aesthetically pleasing design could have complex geometries that was usually
considered impossible.

• Preparing the design without considering the tools to be used could result in
the need for special, more expensive tools.

• As production volume increased, products had to be specially designed to
reduce production time.

• If products shared the same manufacturing process, such as forgings, and the
process was ignored in the design phase, the end result of the products could
be faulty.

Due to the reasons mentioned above, and in line with a trend of combining man-
ufacturing and modern design activities, a method of incorporating manufacturing
considerations into the design phase took shape. The barriers between manufactur-
ing and design departments are fading and will eventually disappear, leading to the
emergence of Design for Manufacturing (Elwakil, 2019).
To provide context for what DFM does in practice, five specific actions describe
DFM. These are: (i) the selection of raw material type, (ii) the selection of raw
material geometry, (iii) the definition of dimensional and geometrical tolerances,
(iv) the definition of roughness, (v) the characterization of specific shape constraints
based on the manufacturing process, and (vi) the selection of secondary processing,
such as finishing (Favi et al., 2016).
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2.3.1.2 Design for Manufacturing and Assembly

Earliest recorded research of DFMA is back in the 1980’s (Formentini et al., 2022).
Additionally, there is Design for Assembly (DFA). DFA is a systematic method that
aims to systematically reduce assembly time by (i) minimizing the total components
in an assembly and (ii) eliminating critical assembly tasks (Boothroyd, 1987).

2.3.2 Zero Defects
Zero Defect Manufacturing (ZDM) endeavors to eliminate defects throughout the
entire value stream (Wan & Leirmo, 2023). In many industries, the human factor
is often perceived as the weakest link, contributing to variations and defects. Con-
sequently, many industries have opted to replace the human factor with technology
as a means of mitigating these issues (Welfare et al., 2019).
The zero defects concept originated as a quality program in the 1960s and adheres
to the principles of Six Sigma and Lean Production (Halpin, 1966; Powell et al.,
2022). ZDM was founded on the idea that the performance standard should be
zero defects, compelling employees to reject any non-conformances (Powell et al.,
2022). After its establishment in the U.S., Japan adopted these principles and made
some modifications, eventually evolving into methods such as Taguchi methods, Six
Sigma, Lean Production, and Total Quality Management (TQM). Although these
methods became more prevalent than ZDM, the latter has re-emerged because it
goes beyond traditional quality approaches, aiming for the complete elimination of
defects. This is achieved not only through the detection and correction of defective
products and process parameters but also through defect prediction and prevention,
facilitated by its technology-intensive concept. With the introduction of Industry 4.0
in the 2010s, ZDM has thus gained greater traction due to the fact that it presents
a digitally enhanced quality management.
The benefits of using ZDM are many, the reduction of defects and improved quality
of parts is an competitive advantage, the reduction of scrap and unwanted parts im-
proves the production sustianability. And the assurance of wanted quality in early
stages of product development deprecates lead-times (Wan & Leirmo, 2023).

Machine vision in combination with convolutional neural networks (CNNs) enables
in-line inspection with unprecedented accuracy (Smith, 2021). The power of this
combination was demonstrated by Su et al. (2019) who integrated the technology
with augmented reality (AR) to visualize assembly operations using object state
and pose estimation. AR can also be utilized as a human-centric approach to assist
operators in detecting errors in real-time (Zhao et al., 2022). The utilization of
such innovations relies on the knowledge and competency of engineers to support
technology integration (Wan & Leirmo, 2023).

Powell et.al has made a list that they consider to be key enabling technologies (KET)
of ZDM (Powell et al., 2022). These are:

• Artificial Intelligence (AI): data-driven techniques for automated data analysis
and decision making
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• Architecture and Standards: integration and communication protocols of in-
dustrial software

• Big Data analytics: elaboration, analysis, and visualization of massive amount
of industrial data

• Cyber-Physical Systems (CPS): control strategies combining physical and dig-
ital resources

• Internet of Things (IoT): multi-source distributed data gathering solutions
• Inspection and monitoring: solutions for the measurement and monitoring of

product and process resources
• Simulation and modelling: solutions for the implementation of digital coun-

terparts of product/process/systems (as Digital Twins, etc.)
• Extended Reality (XR): solutions for the integration of virtual and physical

representations. (Powell et al., 2022)
Bäst källa hittills - (Fragapane et al., 2023).

2.3.3 ZDM strategies
In a paper published in 2019 by (Foivos Psarommatis & Kiritsis, 2020), a content
analysis was conducted on 280 research articles published from 1987 to 2018 in var-
ious academic journals and conference proceedings. Based on this extensive review,
the authors identified four distinctive strategies within ZDM: detection, prediction,
prevention, and repair.

However, in later publications, researchers seem to have reached a consensus that
there is a fifth strategy, namely, defect mitigation or compensation (Caiazzo et al.,
2022; Fragapane et al., 2023; Powell et al., 2022). It has surfaced during the same
study that the detection of defects is the most popular research interest, with 60%
of publications related to the topic (Fragapane et al., 2023). The research interest in
the other strategies is distributed as follows: Prediction 24%, Prevention 9%, Repair
4%, Defect mitigation or compensation 3%.

Detection in terms of ZDM refers to the activity of identifying non-conformity’s,
defects, and anomalies by classifying them based on the parameters that led to the
undesirable result. This activity can occur at every step of a production process
(Caiazzo et al., 2022).

Prediction on the other hand aims to forecast the quality of each part of the
product before its production. The prediction is achieved by specific models and
historical data analyses (Caiazzo et al., 2022). The methods are composed by ap-
plying mathematical modelling with AI technologies (Jagadish et al., 2019).

Prevention refers to the task of monitoring machinery by utilizing inspection tools
and quality control. In contrast to detection, prevention involves observing the state
of the machine rather than the product itself. This is achieved through machine state
analysis so that the process conditions that could lead to defects in the product are
identified proactively. Therefore, the expected outcomes are identified, and coun-
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termeasures are introduced to prevent the contribution of any defects (Powell et al.,
2022).

Repair strategies involve reworking or remanufacturing products. These strategies
are time-consuming and expensive for the company; therefore, the products have
previously been treated as waste. However, with an increased focus on sustainabil-
ity, repair has become an important aspect of ZDM since waste is not sustainable
(Powell et al., 2022). For this reason, repair methods are optimized with the focus
of reduced repair times without obstructing the overall production flow.

Defect mitigation or compensation entails modern strategies for mitigating or
compensating defects aim to proactively identify defects or potential defects and
seek methods to avoid rework. Defects and deviations are compensated for down-
stream in the process chain through feedforward control. The ZDM paradigm is
based on integrating product and process data from multi-source process chains.
Methodologies like stream-of-variation can be used to adjust the downstream pro-
cess and prevent the propagation of dimensional and geometrical deviations in the
measured part (Magnanini et al., 2019). In cases where a model-based solution is
not feasible due to line complexity, specific compensation actions can be generated
without the need for offline rework (Eger et al., 2018, Eldessouky et al., 2019). Ad-
ditionally, in assembly systems, components may vary within predefined tolerances,
which can result in a defective assembled product due to inherent variability in the
parts. Selected assembly methods focus on matching components to minimize the
expected deviation in the assembled product (Colledani et al., 2014a, Colledani et
al., 2014b). These compensation strategies can reduce the need for rework or even
end-of-line inspection, thereby reducing the production of scrap products.

For this thesis, prevention and defect mitigation are of great interest, as they are
related to the idea of a robust design. However, it is noted that the literature found
regarding ZDM strategies (and especially prevention and defect mitigation) do not
adress the fact that design decisions could have a profound impact on downstream
effects.

2.4 The fundamentals of Data Science

In the continuously evolving landscape of technology, the terms data science, data
mining, artificial intelligence, machine learning and deep learning have emerged as
crucial components of the digital era. These fields, while interrelated, possess unique
characteristics and applications that distinguish them from one another.
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Figure 2.8: Relationship between Data science vs. Artificial intelligence vs. Ma-
chine learning vs. Deep learning, according to Kulin et al. (2021).

Figure 2.8, illustrates a venn diagram depicting the relationship between Data sci-
ence, Data mining, Artificial intelligence, Machine learning and Deep learning. Each
subject will be given a more detailed description in the sections below. However, this
is just one way to illustrate the relationship between the different concepts as there
are many ways to interpret these relations. For example, (Chen, 2022) presents an
alternative way.

2.4.1 Data Science
Interest in data science is expanding quickly, with many viewing it as the profession
of the future. Similar to how computer science emerged as a distinct field in the
1970s, we are currently seeing the swift establishment of research centers and under-
graduate and graduate programs dedicated to data science. The field of computer
science arose due to the accessibility of computational resources and the demand
for experts in the area. Similarly, data science is now becoming prominent due to
the widespread availability of data and the necessity for data scientists who can
transform this data into valuable insights. The concept can be seen as a fusion of
traditional fields such as statistics, data mining, databases, and distributed systems.
As data science has its roots in statistics, some even consider "Data science" as a
fancier word for statistics (Van Der Aalst & van der Aalst, 2016).

There has for a long time been confusion around the definition and what data sci-
ence actually is and some argue a reason for this might be because of how it is
intertwined with other data related fields (Provost & Fawcett, 2013a). One general
way to describe data science is as the application to solve relevant problems and
forecast future problems, utilizing qualitative and quantitative methods (Waller &
Fawcett, 2013). Another is to describe data science as a data-driven discipline to
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use large sets of data in order to explain the complex behavior of a system, that can
be hard to understand utilizing more traditional ways as modelling and simulation
(Kulin et al., 2016). A third more detailed way to describe data science has been
as a multidisciplinary field comprising the entire spectrum of data related activities
including activities such as acquiring and storing data, analyzing and cleaning it,
visualizing and interpreting the results, making data-driven decisions, with the aim
to extract value from data and providing businesses with relevant insights (Kulin et
al., 2021). The ability to view business problems from a data perspective is crucial,
as data science extends far beyond algorithms for data mining (Provost & Fawcett,
2013a).

2.4.2 Artificial intelligence
Artificial intelligence (AI) is a science focused on developing intelligent machines
that mimic human behavior, involving areas such robotics, natural language pro-
cessing, information retrieval, computer vision and machine learning (Kulin et al.,
2021). The idea is that machines created by humans are capable of a lot more than
just doing labor intensive work, but also has the potential to develop human-like
intelligence (Y. Jiang et al., 2022). Nowadays, artificial intelligence can today be
considered being the forefront of industrial innovation, automating the processes of
machines through functions like self-monitoring, interpretation, diagnosis and anal-
ysis. Manufacturers are today able to use methodologies related to AI, particularly
machine learning and deep learning, in order to minimize operational downtime and
predict future maintenance needs (Ahmed et al., 2022).

However, the field has been alive for years and there are many subdivisions. Ac-
cording to DARPA (2017), the evolution of AI can be divided into 3 waves.

• The first wave was about "handcrafted knowledge", and involved experts en-
coding their domain-specific knowledge into rules that a computer could pro-
cess. This era saw the development of logistics programs, chess playing soft-
ware and tax preparation programs. For instance, tax experts transformed
the complexities of tax laws into commutable rules, enabling the computer to
apply logical reasoning to specific scenarios. Logical reasoning like this and
programs being able to take a particular fact of a concrete situation and work
through is it typical of this first wave. However, these systems lacked the
ability to perceive the external world, learn, or abstract knowledge to higher
levels. They excelled at solving narrowly defined problems but were deficient
in learning capabilities and handling uncertainty (DARPA, 2017).

• The second wave, characterized by "statistical learning," made significant strides
in areas like voice and face recognition. These systems excel at perceiving the
natural world, such as distinguishing individual faces, and can learn and adapt
from specific datasets. However, their logical reasoning abilities are limited
compared to first-wave systems. While second-wave technologies can classify
data and predict outcomes, they lack contextual understanding, making them
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statistically powerful yet often unreliable. This shortcoming sets the stage for
the third wave (DARPA, 2017).

• The third way of AI takes future perspective on AI, acknowledging the chal-
lenges and limitations found in the previous waves. This wave of AI em-
phasizes contextual adaptation, where systems gradually develop underlying
explanatory models to understand real-world phenomena. These systems will
construct and refine these models over time, allowing them to perceive and
interpret the world through these frameworks. By leveraging these contextual
models, the AI will be able to reason and make informed decisions (DARPA,
2017).

AI can today be found everywhere, and is considered a significant force in transform-
ing socio-economic lives and can be found in industry, healthcare, transportation,
education (Y. Jiang et al., 2022). Some compare it to the introduction of internet
and social media into everyday life and argues that AI will play just as an impor-
tant role. Furthermore, AI will also play a role in corporate decision-making and
interactions with external stakeholders like customers and employees. Humans co-
existing with AI is a reality one must be ready for, and work to ensure this is done in
harmony. Identifying which decisions is better of taken entirely by AI, which could
benefit from human and AI collaboration and which are still better of completely to
human, are important factors firms need to deal with (Haenlein & Kaplan, 2019).

2.4.3 Machine Learning
The popularity for machine learning continues to increase, largely driven by the
massive and continuously growing volumes of data and computational capabilities
(Badillo et al., 2020). Machine learning, a branch of artificial intelligence, focuses
on creating algorithms capable of learning from historical data to enhance a systems
performance (Kulin et al., 2021). Involved in machine learning, is identifying and
learning from concealed patterns in sets of data and applying that knowledge for
classification or predictive purposes (Alloghani et al., 2020). Two major domains of
machine learning are supervised and unsupervised learning (Badillo et al., 2020)

Supervised learning is when the machine it taught using pairs of data, including
input data and its corresponding output, refereed to as ”input-output pairs”. The
algorithms build through supervised learning are thus requiring external assistance.
Unsupervised learning is when the machine isn’t provided with a correct answer
for each input. Algorithms are thus left to independently identifying structure and
patterns in data. Unsupervised learning is mostly used in classification for feature
reduction purposes (Mahesh, 2020).

2.4.4 Deep learning
Deep learning, a branch of machine learning, with a primary goal of achieving ar-
tificial intelligence (Dong et al., 2021). It works by guiding systems or machines in
processing information across multiple layers, enabling them to classify, understand
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and forecast results. Key deep learning techniques are Convolutional Neural Net-
works, Recurrent Neural Networks and Generative Neural Networks (Ahmed et al.,
2022). A significant benefit of deep learning, compared to machine learning is its
capability to identify complex, high-level features from data, autonomously.

2.4.5 Generative artificial intelligence
As a response to advancements in deep learning technology, "deep generative models"
emerged, capable of creating novel content based on existing data. deep generative
models that leverage neural networks have led to substantial improvements in the
quality of generated content, marking significant advancements in the field of gen-
erative artificial intelligence (GAI) (Banh & Strobel, 2023).

Generative AI represents a computational technique and branch of AI capable of
crafting new content, spanning texts, images, or audio, that is often difficult to dis-
tinguish from human creation. Consequently, GAI the capacity to revolutionize ar-
eas dependent on creativity, innovation, and knowledge processing. The widespread
adoption of generative AI technology, exemplified by DALL-E 2, GPT-4, and Copi-
lot, revolutionizing everyday work and how we communicate. Other than being used
for artistic purposes, generative AI can also assist by taking the role of intelligent
question-answering machine (Feuerriegel et al., 2024).

Figure 2.9: Illustration of where GAI exists in relation to AI (Banh & Strobel,
2023)

Worldwide attention were drawn to the field of GAI with the launch of ChatGPT,
signifying a major advancement in the field. Additionally, even though GAI has
been active for the past decade, ChatGPT ChatGPT’s introduction ignited a re-
newed wave of research and innovation in AI. This momentum has resulted in the
creation and release of various advanced tools, including Bard, Stable Diffusion, and
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DALL-E. Tools like these demonstrate extraordinary capabilities, performing tasks
such as text generation, music composition, image creation, video production, code
generation. They are based on a range of cutting-edge models, such as Stable Dif-
fusion, transformer models like GPT-3 and GPT-4, variational autoencoders, and
generative adversarial networks. This progress in GAI opens up numerous exciting
opportunities across diverse sectors, such as healthcare, business and media (Bengesi
et al., 2024).

2.4.6 Natural Language Models
Natural language processing (NLP) is an application of AI, responsible for pioneering
technologies like voice assistants, translation tools, chatbots and a diverse array of
everyday tools. NLP focuses on the interaction between computers and human lan-
guage, specifically on training computers to handle and analyze extensive amounts
of text and other forms of natural language data. Artificial intelligence is utilized in
NLP to absorb, integrate and interpret real-world data in a manner comprehensible
to computers, irrespective of the language used. Similar to how humans having
sensory organs like ears and eyes for hearing and seeing, computers possess input
mechanisms for reading text and collecting audio. Just as humans rely on their
brains to process sensory information, computers rely on programmers to process
their inputs (Myers et al., 2023).

2.4.7 Large Language Models & Foundation Models
Part of the domain of NLP is foundation models and large language models (LLMs)
(Myers et al., 2023). In recent years, large language models have gained significant
traction, garnering attention both in academic circles and within industry, owing to
their capacity to support in a multitude of tasks (Chang et al., 2023). LLMs be-
long to a category of foundational models that undergo extensive training on large
datasets, enabling them with the capability to comprehend and generate natural
language in order to execute a broad spectrum of tasks (IBM, 2024). Data can be
text from articles, books and other information found on the internet, for example
(Thirunavukarasu et al., 2023). In essence, LLMs utilizes deep learning technology
(Shen et al., 2023) and mark a substantial leap forward in the field of artificial in-
telligence (Kasneci et al., 2023).

At the basis of LLMs, there lie transformer architecture (Kasneci et al., 2023). The
Transformer architecture uses the self-attention mechanism to determine the rele-
vance of different parts of the input when generating predictions. This allows the
model to better understand the relationships between words in a sentence, regard-
less of their position (Vaswani et al., 2017).

Foundation models are the response to a shift in how machine learning conventionally
are trained. Instead of constructing task-specific models from the ground up, pre-
trained models known as ”foundation models” are customized through fine-tuning
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and then deployed to cater to a diverse array of domains. These foundation models
facilitate the transfer and sharing of knowledge across domains, thereby reducing
the necessity for task-specific training data (Mai et al., 2023). Foundation models
thereby serve as an initial framework for the development of more specialized tools
(Myers et al., 2023).

2.4.8 Model Tuning
Fine-tuning an LLM involves adapting a pre-trained LLM to a specific task or
dataset by further training it on relevant data (Hu et al., 2023). Increasing the
size of language models does not necessarily enhance their ability to follow a user’s
intent. For instance, large language models can produce outputs that are inaccurate,
harmful, or unhelpful to the user (Ouyang et al., 2022). To tailor a general-purpose
LLM for specific tasks, it must be trained on a task-oriented data. Supplementary
training like this enables the model to fine-tune its parameters, aligning its capabil-
ities with the particular task or domain of interest (VM et al., 2024). For example,
FinGPT is trained and adapted to the domain of finance (X.-Y. Liu et al., 2023),
whereas PMC-LLaMA is trained and fine-tuned to suit the medical domain (C. Wu
et al., 2024).

While OpenAI models can address many use cases, there is a strong demand for
domain-specific LLMs due to concerns about data privacy and pricing. By keep-
ing the stakeholder’s dataset and the LLMs on-premise, these models ensure data
security. Additionally, fine-tuned LLMs offer high-quality, customized results and
exhibit low latency in displaying outputs (VM et al., 2024). This two-stage ap-
proach naturally extends to solving tasks in private learning, effectively mitigating
data scarcity concerns through the vast scale of the public pre-training dataset. In
essence, a private dataset allows for local fine-tuning and alignment of the model
(Yu et al., 2021).

2.4.9 ChatGPT
An example of a generative artificial intelligence chatbot is OpenAI’s ChatGPT
built on the transformer architecture. It was developed through fine-tuning of an
LLM, and can thus be considered as an LLM application (Thirunavukarasu et al.,
2023). Generative AI refers to a category of machine learning technologies capable
of producing new content, including text, images, music, or video, by scrutinizing
patterns within existing data (Brynjolfsson et al., 2023). This is categorized as GAI,
enabling users to automatically generate content tailored to their individual needs
(T. Wu et al., 2023). According to a report by UBS, ChatGPT achieved over 100
million monthly active users by the end of January 2023, a mere two months after
its launch (Paris, 2023).

In 2022, leading technology companies worldwide introduced and refined a vari-
ety of GAI-products. Notably, OpenAI unveiled DALL-E-2, capable of generating
high-quality images based on specific descriptions, while Meta introduced Make-A-

25



2. Theory

Video, enabling the direct translation of texts into videos. Towards the end of 2022,
OpenAI launched the public version of ChatGPT, drawing global attention for its
exceptional ability to accurately respond to human requests in natural language (T.
Wu et al., 2023).

ChatGPT, an intelligent conversational agent, delivers detailed responses based on
given prompts. As part of the GAI landscape, ChatGPT exhibits robust function-
ality across various language understanding and generation tasks, including multi-
lingual machine translation, code debugging, story creation, error acknowledgment,
and even rejection of inappropriate requests, as stated officially. Unlike its prede-
cessors, ChatGPT can retain previous user input within a conversation, facilitating
continuous dialogue. In March 2023, following the release of OpenAI’s GPT-4, Chat-
GPT received substantial updates, allowing users to input both textual and visual
data concurrently. This enhancement enables the completion of more complex mul-
timodal tasks, such as image captioning, chart reasoning, and paper summarization
(T. Wu et al., 2023).

2.5 Decision-making
Decision-making is one of the most important concepts when designing engineering
systems (Eres et al., 2014). According to Kahneman (2011), there are two main
types of decision-making: system 1 and system 2.

System 1 refers to the mode of decision-making characterized by automatic, effort-
less responses. These decisions are often shaped by habit and intuition, and they
are typically made swiftly. Kahneman (2011) suggests that while intuition can be
effective in certain situations, relying solely on System 1 for significant decisions can
be precarious. This is because erroneous decisions made through this system may
feel right at the moment, despite their potential lack of accuracy (Kahneman, 2011).

In contrast, System 2 is our deliberate, analytical mode of thinking. It requires con-
scious effort and mental energy to engage, often used for complex problem-solving
and logical reasoning. System 2 helps us make careful decisions and override intu-
itive responses when necessary, ultimately resulting in more reliable decisions (Kah-
neman, 2011).

2.5.1 Data-driven decision-making
In today’s business landscape, there’s an abundance of data at our fingertips, driv-
ing companies across diverse sectors to harness it for a competitive edge. The sheer
volume and diversity of data now surpass what manual analysis can handle, even
pushing the limits of traditional databases. Meanwhile, the exponential growth
in computing power, coupled with ubiquitous networking, has paved the way for
sophisticated algorithms capable of integrating datasets for more extensive and pro-
found insights than ever before. This confluence of factors has led to the widespread
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adoption of data science in business operations (Provost & Fawcett, 2013b).

Data-driven decision making involves making choices grounded in the analysis of
data rather than relying solely on intuition (Provost & Fawcett, 2013b). In recent
times, there has been a significant shift in data storage and processing technolo-
gies, opening up new avenues for data collection and utilization. This has prompted
numerous managers to revise their decision-making approaches, moving away from
reliance on intuition and towards a greater reliance on data-driven strategies (Bryn-
jolfsson & McElheran, 2016). For example, data-driven decision-making in main-
tenance and operations work has spurred the advancement of novel methodologies
and algorithms designed to aid engineers in making more optimal choices (Bousdekis
et al., 2021).

Statistically, the more data-driven a firm is, the more productive it is (Brynjolfsson
et al., 2011). However, even though there is an abundance of data available for
decision-making, many decisions often rely on the experiences, opinions, intuitions,
and various criteria put forth by product management and stakeholders. These deci-
sions tend to be subjective, marked by inconsistency, and frequently lack transparent
explanations or ties to the underlying data and evidence. Furthermore, decisions
influenced by opinions, intuitions, and arguments are prone to political manipula-
tion and personal biases, rather than being anchored in business opportunities or
customer value. Even when data is incorporated into decision-making processes, an
overflow of information can confuse decision-makers rather than providing clarity
(Svensson et al., 2019).
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Method

In this chapter the methodology used for the thesis is presented.

3.1 Methodology
This section describes the method used to achieve the aim and answer the research
questions. Initially, an internal interview study focusing on the present state of
concept development at GKN will be conducted. In order to learn the current
perception, limitations and ongoing initiatives at GKN, an interview study with a
range of different stakeholders at GKN was conducted. The interviews were planned
as 60 minute recorded sessions, that were transcribed and analyzed using a set
of guided questions Thereafter, a literature study projecting into the future state
and exploring the opportunities of incorporating AI and ML into the processes
was undertaken. Additionally, a second interview study took place with external
companies in order to benchmark their progress in incorporating AI/ML tools into
their product development processes and to understand how they have achieved
it. Thereafter, a benchmarking study was conducted where other companies with
similarities to GKN was interviewed to gain insights in industry trends, how far
they have come with implementing AI/ML methods in their processes, and lessons
learned from such implementations. Finally, a literature study was performed to
gain knowledge about the current state of the technologies, its capabilities and
limitations. The methodology process flow can be seen in Figure 3.1.
The authors Bell, Bryman, and Harley explain that qualitative studies are well-
suited for investigating complex and context-specific problems in-depth, which con-
tributed to the choice of conducting a qualitative study (Bell et al., 2019). Moreover,
the authors Patel and Davidsson (2019) describe that a qualitative method provides
a greater understanding of a subject, which formed the basis for the decision (Patel
& Davidson, 2019).

However, qualitative studies can also involve the interviewer’s interpretation and
subjective judgments. The authors own notions and experiences can influence data
collection, analysis, and interpretation of the gathered results. This can lead to
the development of personal opinions and biases in the study. For this study, an
abductive approach was chosen, meaning that existing theories and empirical data
form the basis for the analysis. By incorporating aspects from relevant theory and
conducting interviews with individuals with insights from industry and research, a
breadth is created in the study. According to Dubois and Gadde (2002), an abduc-
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Figure 3.1: The methodology used to answer the research questions.

tive approach allows the purpose of the study and also the theory to evolve based on
the empirical evidence (Dubois & Gadde, 2002). Furthermore, the authors explain
that it enables the connection between theory, empirics, and interviews.

3.1.1 Study on current concept development processes and
AI/ML initiatives at GKN

The very first step, before conducting the qualitative study, is to perform initial re-
search of current product development and concept development processes at GKN.
As well as AI/ML initiatives within the company. The material will be in the
shape of documents, reports and presentations on the company’s current work within
AI/ML. The data gathered through the study will then be analysed, structured and
categorised so that a view on the company’s current state can be presented later on.
The results of the study will help partly determine where the company is today in
terms of what AI/ML technology they have available and how it is currently utilised.
This, in order to develop questions for the first step in the qualitative study which
are the interviews that are planned to be held with employees at the company.

3.1.2 Interview study
The initial phase revolves around understanding how concept evaluation and gen-
eration is presently conducted at GKN. This includes a detailed examination of the
methods employed, the challenges faced, and the opportunities that exist within the
current framework. The study aims to identify valuable lessons learned from past
experiences in concept evaluation and generation.

The second phase involves interviewing respondents with AI/ML experience to gain
insights into the gaps that currently exist at GKN, which need to be addressed be-
fore any potential implementation. Additionally, the study seeks to identify AI/ML
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tools that could be used in concept development at GKN and their limitations. Fi-
nally, the second phase aims to understand GKN’s current capabilities regarding
AI/ML.

The interview study will be conducted in a semi-structured manner and will be tran-
scribed and recorded if accepted by the respondents. The number of respondents is
determined by the amount of relevant information gathered. When it is safe to say
that enough information has been reached to confidently determine a "best practice"
in concept development, the interview study is considered complete.

The respondents to be interviewed are experts in their field at GKN and have ex-
tensive experience in concept development during the early stages of product devel-
opment. Additionally, experts in the fields of AI, data science, and ML at GKN will
be interviewed to gain a stronger understanding of the area. Lastly, it is interesting
to interview respondents from other industries to learn about their experiences in
this field and to benchmark their ways of working against those at GKN.

A crucial step in the interview process will be to as early as possible, establish
contact with relevant actors. What actors that are considered relevant is decided
by their roles and experience, and by the recommendations from our supervisors.
Coordinating schedules in some people’s calendars can be challenging, so the sooner
we contact the right individuals, the better. We also need to be ready for the pos-
sibility of not being able to reach certain actors and have a backup option in this
case. A second crucial step is related to interview questions. The better questions,
the better the answers will be. Prior to the interviews, through research will be
conducted in order to make the most out of the time of the interview. Both to save
our time as well as the interviewees.

Respondents will be requested to provide consent for recording the interviews, ensur-
ing that the study retains as much detail as possible for later transcription. Respon-
dents can choose to remain anonymous; however, maintaining maximum credibility
is crucial for the study, especially since the respondents are expected to be experts
in their respective fields.

Similarly, for interviews conducted offsite at other companies, it will be made clear
to the interviewees that they could be anonymous. Additionally, they will be told
that the recordings will be deleted after the submission of the report.

In cases where consent for recording interviews is not granted, information will be
documented through notes. If any sensitive information is disclosed during the in-
terviews, it will be removed from the notes and will not be included in the final
report.

The respondents that took part in the PD-process research are represented in the
Table 3.1:
Additionally, two more interviews were conducted in order to gain more knowledge
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1:st round interviews: PD-process
Respondent

Code
Current Position

Title
Years at

GKN
Interview

Time (min)

R1 Principal Research
Engineer 33 86

R2 Head of Design 26 38

R3 Team Lead
Design 19 41

R4 Project Leader 25 41
R5 Design Lead 42 38

R6 Principal Research
Engineer 24 46

R7 Project Manager 27 Recording
not allowed

R8 Senior Design
Engineer 37 66

R9 Design engineer (7) 32

R10 Senior Design
Engineer 26 55

R11 Principal Design
Engineer 26 34

Table 3.1: The respondents that participated in the first round of interviews about
the PD-process.

about which role or individual actually evaluates the concept and makes the decision
to move forward with the actual concept. These interviews are shown in the Table
3.2 below:

Who decides upon the concept evaluation interviews
Respondent

Code
Current Position

Title
Years at

GKN
Interview

Time (min)
R12 SVP 13 30

R13 Head of
Industrial Architects 19 45

Table 3.2: Interviews that dowelled deeper into concept evaluation and deciding
upon concepts.

The respondents for the second stint of interviews to gain knowledge about current
AI/ML initiatives, infrastructure, and IT capability is depicted in Table 3.3:

3.2 Benchmarking study
The overall aim of the benchmark study is to see what is currently considered state
of the art within the industry in terms of implementing AI in product development
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2:nd round interviews: AI/ML
Respondent

Code
Current Position

Title
Years at

GKN
Interview

Time (min)
R14 Analysis Lead 12 58
R15 CoE Manager 20 50
R16 Research Engineer 1.5 36

R17 CoE Director
Engineering IT 5.5 34

R18 CDO 13 30

Table 3.3: The respondents that participated in the second round of interviews
about AI/ML.

and compare this with where GKN currently stands. More specifically, it involves ex-
amining how it has been implemented in concept generation and evaluation, which
could open up opportunities to partake in existing experience. If external actors
have been successful/unsuccessful in implementing AI, what did they learn, and
what obstacles did they encounter? Much of it is about sharing lessons learned that
already exist around the area.

It is also of interest to gain a more strategic perspective and their view on AI and
what motivated them to implement it. If they have a more critical perspective to-
wards AI and can provide a motivation for why, this would also be an interesting
result. What opportunities did they see/did not see?

The study will also verify or refute statements collected from our previous interview
research. If statements arise that can be seen as contradicting previous results,
it could be due to differences between industries, which would be interesting. In
addition, the study will identify gaps in the implementation of this technology that
GKN needs to address. It will also explore whether these gaps are similar across
industries or not, which is also of interest to us. The respondents that took part in
the benchmarking study can be found in Table 3.4.
To achieve this, an external interview study will be conducted at other companies,
preferably aerospace companies, and/or companies that also mainly focus on hard-
ware products with complex geometries.
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Benchmark Interviews
Respondent

Code
Current Position

Title
Company

Name
Years of

Experience
Interview

Time (min)

R19 Senior Technology
Engineer GKN Fokker 6.5 40

R20 Manager Manufacturing
Development SKF 28 40

R21 Director in
Development Quality C3 (Confidential) 29 44

Table 3.4: The respondents that took part in the benchmarking study.

3.2.1 Literature review
The subsequent phase shifts the focus towards envisioning the future state of con-
cept evaluation. The literature study aims to answer key questions regarding what
AI/ML methods are applicable, process improvement, the integration of AI/ML
technologies, and the establishment of a robust selection criterion for concepts. Con-
sequently, there is a need to search, organise/describe and analyse AI/ML methods
available. Within this context, the study seeks to identify opportunities for improv-
ing the concept evaluation and generation process.This, to later identify how AI
tools could be applied in a correct way at GKN Aerospace.
To achieve this goal, screening will be conducted on various articles and scientific pa-
pers, carefully assessing their relevance to the searched topic through the platforms
Scopus, Sciencedirect, Google Scholar, Aerospace Research Central and Chalmers
Library. Literature selection will be primarily based on the text’s title, and a thor-
ough examination of the abstract and conclusion. If the content is deemed relevant
to the research scope, the information from the literature will undergo further anal-
ysis and integration into the project.

To ensure the relevance and reliability of the literature, specific criteria were es-
tablished. Given the rapid advancements in the field, the literature needed to be
recent. Peer-reviewed scientific publications were of the highest interest and was
favored when possible to ensure high quality, as they are a mark of credibility .
However due to the recency bias articles that was very new was also included. Ad-
ditionally, literature that was frequently cited or referred to was favored, as a high
number of citations often indicates central importance to the field. Above all, the
relevance of the literature to the study’s topic was the primary criterion for inclusion.

To systematically manage the large volume of literature, a folder structure in Google
Drive was utilized throughout the project. This folder contained and documented
every article read and hold various details about each piece of literature, including
the publication title, authors, year, search keywords, notes from reading, the deci-
sion of inclusion or exclusion, and the context in which it was used. This approach
ensured an organized and efficient handling of information, facilitating a compre-
hensive and relevant literature review.
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In this chapter the result and analysis of the research study is presented.

4.1 Outcome of interview study

The following sections show the results from the performed PD-process, AI/ML,
decision-making, and benchmarking interviews.

4.1.1 Outcome of PD-process & decision-making interviews

Research question one will be answered through the first round of interviews, based
on the answers from respondents connected to the PDP such as design engineers
and decision-makers. The respondents can be seen in Table 3.1 and Table 3.2.

As can be seen in Figure 4.1, the result from the interviews is compiled of 42 differ-
ent challenges which have been categorized into 8 main categories: “Data secrecy“,
“Time“, “Organizational synergy“, “Information“, “Human factor“, “Balancing de-
mands“, “Conservative culture“ and “PD-process“. For some of the categories, sub-
categories has been created to specify variations withing the main category. Index-
ation/labeling of each challenge has been done in order to efficiently being able to
reference to specific challenges in later in the report. Labeling follows the following
logic: ”CD1” = ”Challenge Data secrecy 1” and ”CT1” = ”Challenge Time 1”, for
example.

Red arrows has been added in order to distinguish between cause and effect.
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Figure 4.1: Aim diagram PD-process.
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Data secrecy:
• CD1: There is a challenge centered around data and that some data cannot be

shared across programmes [R1]
• CD2: There is a challenge centered around contracts and the opportunity to use

information between different customers. This can have a inhibitory effect, as
certain information gained from a project with one customer, cannot be used in
projects with another customer [R2].

“Unfortunately, we are sometimes a little slowed down by our agree-
ments. Because what we have learned in collaboration with a customer,
we cannot easily use in an assignment with another customer “ - R2

• CD3: There is a challenge centered around access to information, as not all
information is available to everyone within the organization [R1]

“This is especially difficult if you have worked at the company for a
short time and do not have a wide network of contacts. In addi-
tion, there are limitations on information, especially when it comes
to projects involving military aspects. Sometimes it is necessary to lock
in and limit the availability of information. “ - R1

Time:
• CT1: There is a challenge centred around lengthy, time-consuming analysis of

strength of materials and aero-performance. Some analyses can run for 3 months
[R5]. On the design side, getting the right loads from the customer is absolutely
crucial. If the loads are changed too late, analysis must be redone [R11].

“The analyses are the most time-consuming. Whether it’s for aero-
performance or strength of materials. These analysis can run for 3
months.“ - R5

• CT2: There is a challenge centered around lead-times for materials such as forg-
ings ans castings [R5].

“But another thing that takes a long time is to get materials, forgings,
castings. That’s where you have the longest lead time. From the time
we have done the analyses, finished the model and then send it off to
the caster, you need to wait 8-9 months before you get anything back.
“ - R5

This presents issues because despite still being in the concept phase, the material
needs to be on-site within 12 months. The purchasing department endeavors to
calculate backwards to synchronize this timeline, and it is frequently the case
that the concept choice should have been made several weeks prior. Everyone
wants enough time, which creates constrains right from the start [R1]. There is
also a risk associated with this, as not not everything is decided in PDR when
the orders are placed [R3].
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• CT3: There is a challenge centered around time-consuming material testing for
technology development, to generate required material data [R1].

“Yes, material testing is often a lead time driver for technology and
pre-development. If we don’t have a material database, for example,
then a material testing process can be very expensive and take a very
long time.“ - R1

Organizational synergy:
• CO1: There is challenge centered around how new technologies are being devel-

oped. Today, the process is inefficient and there is a lack of technical management
that ensures coordination between different disciplines within the organization
[R8].

“We work inefficiently. There is no technical management to ensure
that we develop technologies that ensure that we develop technologies in
a good way, and that we coordinate between different projects in a good
way“ - R8

• CO2: There is a challenge centered around working with the nozzle for exam-
ple, where several persistent challenges arise with each design iteration. Despite
efforts to seek alternative solutions, improvements are hard to achieve. These
obstacles tend to persist without resolution [R11].

“In the area I’m on, the nozzle side, there are a few areas where we
always get stuck on every single design we make. We want to find a
new solution, but it never gets any better. We can’t get around it“ -
R11

Information:
• CI1: There is a challenge centered around knowledge management and skill in-

tegration. There is a lot of information within the organization, but a lot of
this knowledge is stored as experience held by the personnel [R10, C1.3]. This
might require someone to look for documented lessons learned instead. However,
finding information and lessons learned is generally difficult and about 20-30% of
time is spent on searching for needed information [R10, CI1.1][R9, CI1.4].

“It’s like a jungle when you have to search for information. Of course,
you can search for a few arbitrary words, but then it is important that
you know the exact title of the document or who has worked on it. So
no, it’s not easy.“ - R9

This becomes even more challenging for new employees as they are required to
find the right people, as opposed to find documented information [R10, CI1.2].
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• CI2: There is a challenge centered around managing customer expectations and
requirement changes in product development. One of the major challenges is to
know what the customer wants, before the customer knows it. Today, the focus
is mainly to meet requirements, but in order to possibly gain a larger share of a
program, increase revenue and gain advantage in future business negotiation, it
would be beneficial to create products that supersede customer expectations [R2,
CI2.1].

“I think one of the big challenges is that we manage to understand
what it is the customer wants before the customer has figured it out
for themselves so that we can offer functionality that adds something
extra, an added value. I think we are better at just living up to a set
of requirements than figuring out how we can offer something more.“ -
R2

Furthermore, it is commonplace for customer requirements to evolve throughout
the development process, often necessitating the generation of new concepts that
were previously deemed finalized [R4, CI2.2].

• CI3: There is challenge centered around knowledge maintenance. Finding lessons
learned from previous projects and identify what new technologies are available
is challenging, as there is no good source to turn to [R3, CI3.1].

“The big challenges are to find lessons learned from previous projects
and identify which new technologies are available to use. There is no
good library to turn to, you have to know what has happened in previous
projects, know which people to go and talk to“ - R3

Additionally, knowledge maintenance also becomes challenging as there can be
several years in between product development projects [R13, CI3.2].

Human factor:
• CH1: There is a challenge centered around team composition for conceptual

innovation. The quality of the concepts generated is heavily contingent upon the
composition of the group. In some instances, the presence of an individual serving
as an enabler within the group is crucial for fostering out-of-the-box thinking,
regardless of the level of knowledge possessed by other members [R9, CH1.1].
However, creating teams with members of different ages and with different frames
of references can be a challenge of its own [R9, CH1.2].

“Another challenge is that you have quite poor spread in the ages be-
cause you have much the same thinking. If you are around the same
age, you often have quite similar frames of reference. It might help a
discussion, but it probably doesn’t help from a creativity perspective, I
think“ - R9
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• CH2: There is a challenge centered around achieving objectivity and acceptance
in concept assessment. Even though the process of evaluating concepts is stan-
dardized and supported by concept choice matrices, subjective elements tend to
influence how different concepts are scored and rated. It is common for a project
group to get attached to a certain, even though it might not objectively be the
best[R1, CH2.1]. The challenge is also not only to find the best solution, but also
to get people to accept it[R1, CH2.2].

“But there can still be subjective elements in the scoring itself, so a
common pitfall is that a project team falls very much in love with a
concept.“ - R1

• CH3: There is a challenge centered around human error and individual knowl-
edge. As a lot of information is bound to individuals as experience, a common
way to acquire new information is to ask experts in different fields. However,
When compelled to rely on inquiries to individuals, there is a risk of being mis-
led, as the individual may recall or interpret the information incorrectly [R3,
CH3.1].

“It is more common to seek out a person who has worked with it before
and ask questions such as: "what problems did you have?". And then
you get what that person remembered at the moment and then you take
it to heart. There is always a risk that you miss things that are in
lessons learned though by doing this. The person may remember wrong
or I interpret it wrong because it is not well enough described “ - R3

Balancing demands:
• CB1: There is a challenge centered around navigating trade-offs in design explo-

ration. Achieving a balance between exploring numerous concepts and arriving
at a concrete solution entails navigating a deliberate process of ideation and re-
finement. A risk arises when one becomes fixed on something without thorough
understanding or exploration. Finding a balance is essential [R1, CB1.1].

“However, there is a risk that you lock yourself into something you
have not fully understood or explored. There may also be a better so-
lution around the corner, but a faster route has been chosen. On the
other hand, one can be deeply engaged in conceptual and abstract ideas,
wanting to explore a lot, but never arriving at anything concrete. It’s
about finding a balance“ - R1

There is also a trade-off between function, performance, weight, manufacturabil-
ity and cost and the trick is to find a balance between these factors [R2, CB1.2].

• CB2: There is a challenge centered around managing managing conflicting de-
mands in product development. As economics is becoming a more important
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factor, design engineers need to manage new demands on costs that they are not
used to [R11, CB2.1].

“In the project I’m involved in right now, we’ve demanded that the
customer decide on the concept selection matrix. So we have included
that in the technical spec. Right now they have set that the cost is 50%
and then the other is distributed so that the sum is 100%.“ - R11

Economic requirements are also mostly focused by project management, and
there conflict can occur between project management and technical management
[R8, CB2.2]. The vast amount of conflicting demands and needs in product
development makes it challenging to come to a final decision [R11, CB2.3].

• CB3: There is a challenge centered around balancing precision and flexibility
in product development. A major challenge involves securing accurate customer
input data to ensure the correct scope is addressed and that the data accurately
reflects the customer’s true preferences [R5, CB3.1].

“To get the right input data so you know which scope to solve. That is
often the biggest problem. I mean, those weight factors I was talking
about, getting them so that they really reflect what the company wants“
- R5

Adapting the risk level to the current situation is also crucial, and it requires
the courage to take risks early while endeavoring to minimize risks later in the
development process. [R1, CB3.3]. Tolerances also creates challenges, where the
goal is to create a product that is robust, while having loose tolerances [R11,
CB3.2].

Conservative culture:
• CC1: There is a challenge centered around difficulty justifying front-loading.

From a management perspective, more resources should be put into earlier phases
of development, as this is where the important decisions are being made. The
choice of concept dictates about 80% of the cost [R6].

“One obstacle is probably this frontloading that you have a hard time
motivating and setting early. And thus may not have time to evaluate
all aspects as you should, which means that you will have problems later
on“ - R6

• CC2: There is a challenge centered around risks associated to choosing a con-
cept. The challenge is to take calculated risks while maintaining awareness of the
potential outcomes. This is why it is preferable not to choose a concept about
which there is little knowledge. It’s better to select a concept with known risks,
as it allows for the implementation of risk mitigation strategies [R1].
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“So the challenge is to take the right risks but also to take the risks
with open eyes. That’s why I don’t want to choose a concept that I
don’t know anything about. I prefer to choose a concept that I know has
many risks, because then I have a method to work with risk mitigation
and problem solving“ - R1

• CC3: There is a challenge around getting people to dare dry new concepts. There
is conservatism within the airline industry and this makes it challenging to dare
look into and create new concepts [R7].

“It’s a challenge to deal with conservatism in the industry, and get
people to dare something new“ - R7

• CC4: There is a challenge centered around people claiming they already know
something is not working because they have done it before. However, this mindset
can impede progress, as advancements in technology or alternative approaches
may now render the idea viable [R9].

“A big obstacle that I think I see sometimes is that you are hindered
by having investigated a certain trail before. Then it becomes easy to
conclude that no, we have tested it and it does not work. But you may
not see that the processes have changed or that there are new materials
or new approaches that make what was previously not possible possible
now possible. “ - R9

PD-process:
• CP1: There is a challenge centered around ambiguity and decision-making in

concept development. Early phases of development are characterized by large
uncertainty and managing this is challenging. A lot is still open and and there
are several perspectives on what a good solution is [R1, CP1.1].

“The most challenging thing is usually when everything is open. Each
team member has their own idea of what a good solution is, which means
there are many different perspectives.“ - R1

Furthermore, when working with design and definition, one are at risk of locking
oneself in to early. It is important to balance freedom and design exploration in
early stages. It’s about engaging people to take responsibility, but at the same
time avoid rushing into action without proper planning [R1, CP1.2]. At the end
of the day, the challenge is to examine all concepts, even those who show low
potential to work [R8, CP1.4]. While the design team is working with concepts,
they must handle the fact that top management is taking investments decisions
earlier than the decisions taken from concept development [R12, CP1.3].

• CP2: There is a challenge centered around navigating dynamic processes and
evolving requirements. There is always conflict between theory and reality. A
process embodies an idealized depiction of how something should function, yet in
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practice, it serves as a framework for actual implementation. While the design
team have a clear direction, the process cannot anticipate potential changes in
requirements or other unforeseen factors that may arise [R1, CP2.1]. However,
even when there are no unforeseen factors, people still still occasionally skip
certain steps as the they find the process to cumbersome [R10, CP2.2]

• CP3: There is a challenge centered around getting all software to interact and
transfer data efficiently [R1, CP3.1].

• CP4: There is a challenge centered around complexity and risk in project man-
agement. Anticipating potential issues is a significant aspect the work, often
addressed through methods like P-FMEA. These analyses can be intricate and
thorough, focusing on turning abstract ideas into practical plans. However, there
are numerous pitfalls, particularly when manufacturing seeks rapid outcomes,
risking the creation of hastily developed solutions [R1, CP4.1].

“Much of the work is about anticipating potential problems, and this
often uses something called P-FMEA. These analyses can be complex
and extensive, and it is very much about transforming abstract thoughts
into concrete plans. There are many pitfalls, especially when manufac-
turing is striving for quick results and thus risks creating something
hasty.“ - R1

Managing deviations linked to production is also a major challenge [R6, CP4.2]

4.1.2 Outcome of AI/ML interviews

The questions ”What are the gaps that are needed to be filled for a successful imple-
mentation of AI/ML methods to improve robust conceptual design work at GKN?”
and ”What are GKN’s current AI/ML capabilities?” will be answered by the second
round of interviews, the AI/ML interviews with respondents within the field. The
respondents can be found in Table 3.3. The interview study highlights several lim-
itations and gaps that need to be addressed before implementing AI/ML methods
in GKN’s conceptual design work.

The accompanying AIM diagram provides an overview of how the issues relate to
one another, based on statements from respondents during the interview. The AIM
diagram can be found in Figure 4.2 below.
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Figure 4.2: AIM diagram two that answers RQ2.
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The limitations and gaps are organized into different categories. Citations for each
statement will be presented below their respective category as follows. The cate-
gories are:

• Culture/Organizational
• Data quality
• Infrastructure
• Knowledge/Skill
• Legal compliance/Data secrecy

4.1.2.1 Culture/Organizational

The sectioning of Culture/Organizational can in turn be divided into the two sub-
groups, Top-Down-Culture, Organizational Culture and Rejection.The top-
down culture exhibits reluctance towards adopting AI/ML methodologies until their
value for the organization is proven. It emphasizes that their role is to ensure the
company does not rush into adopting AI strategies. Furthermore, it suggests that
numerous other improvements could be pursued instead of implementing AI/ML
methods, questioning the relevance of AI for their business. Although this cautious
approach is sensible, the authors sensed from the interviews a notable skepticism
towards AI/ML at the executive level.

The organizational culture indicates that employees are uncertain about the com-
pany’s direction concerning AI/ML strategies. They are aware of its use in produc-
tion, and some are involved in its application, but broader awareness is limited. Fur-
thermore, while some employees have significant knowledge and passion for AI/ML,
others show little interest. Additionally, discussions about available AI/ML meth-
ods are not widespread throughout the company; instead, employees explore these
topics independently.

This uncertainty is increased by the fact that there seems to be no clear plan for
the implementation of these technologies. One employee explicitly stated:

“There is no direct implementation plan of AI or machine learning to
my knowledge.“ - R14

While employees are cognizant of AI’s deployment in production and some are ac-
tively engaged in its applications, there is a general lack of widespread knowledge.
Moreover, discussions on AI/ML methodologies are not commonly shared across
the organization. Instead, individuals tend to explore these topics on their own, and
plans for a structured approach to technology integration are intentionally absent,
as another employee noted:

“The short-term plan from my side is that we should not have a technol-
ogy plan for AI and ML...“ - R18

This independent exploration of AI/ML is partly due to the company operating as
three distinct entities, which limits skills and information sharing. However, there
are signs of improvement and potential for better integration [R17].
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Despite the presence of enthusiasm and substantial expertise in AI/ML among cer-
tain employees, there is a noticeable disparity, with others showing minimal interest.
The healthiest attitudes towards AI/ML still contend with naivety and the allure of
buzzwords [R17]. One of the significant hurdles mentioned is the reluctance to shift
from traditional methods to more automated solutions, as captured in an employee’s
observation:

“The main challenge of implementing AI is the human aspect of having
to let go of control... One simply doesn’t trust the solution, one would
rather trust their Excel model. - R17“

It has been observed that implementing AI technologies is most effective close to
production areas, where issues are felt more acutely and can be addressed directly
[R17]. However, organizational challenges persist as engineers are often not well-
versed in AI/ML techniques, making integration and application more difficult [R14].
Furthermore, the effective use of AI is contingent on understanding the fundamental
issues and having access to quality data. Without these, AI’s potential cannot be
realized, as emphasized by the following remark:

“AI has no intrinsic value. But if we don’t understand the basic problem,
we don’t have the data that is quality assured, then it doesn’t matter what
we want to do with AI.“ - R17

Moreover, while there are recommendations from sources like the Harvard Business
Review on the need to introduce and transform using AI/ML, practical guidance
on how and where to apply these changes remains elusive [R18]. In some instances,
AI proves to be beneficial, but often, simpler solutions such as data visualization
are adequate to resolve issues without the need for advanced AI applications [R18].
This highlights a selective utility of AI in the company, emphasizing the need for a
more strategic and informed approach towards its adoption and use.

Rejection:
In the discussions surrounding the adoption of AI/ML technologies within the com-
pany, interviews revealed a noticeable skepticism, potentially linked to the cautious
approach noted in the Culture/Organizational section. Several statements indi-
cated a critical perspective toward the use of AI/ML.

One employee emphasized that without quality data and a deep understanding of the
underlying problems, AI lacks value [R17]. This point was supported by another
respondent who noted that the advantages of AI are often surpassed by simpler
methods like data visualization [R18]. Additionally, an important reflection on the
role of these technologies was shared:

”AI and ML are tools, not standalone objectives.” - R18

Technical challenges were also highlighted, especially concerning AI’s capabilities
in handling complex geometrical data. One respondent pointed out the difficulty
of machine learning models to capture subtle details [R14]. The conversation also
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touched on the unrealistic expectations placed on AI performance, as one respondent
criticized the demand for perfect accuracy:

”The main challenge is that algorithms are expected to deliver 100% ac-
curacy, unlike humans.” - R16

Concerns about generative AI were discussed, particularly its early development
stage and uncertain risks, including the potential for providing incorrect information
confidently:

”In terms of generative AI, I think this is very early on. It is still very
unclear what the risks are... That they sometimes give the wrong infor-
mation confidently.” - R16

Furthermore, the context in which AI operates was noted as being full of external
variables and caveats, suggesting that the technology’s effectiveness is significantly
influenced by surrounding conditions [R14].

Finally, the critical role of human judgment was emphasized, especially in ensur-
ing the reliability and applicability of AI solutions. The need to maintain human
oversight in decision-making processes to ensure product worthiness was highlighted
[R14]. This collection of viewpoints presents a careful and thoughtful approach to
integrating AI/ML into company processes, reflecting an organizational ethos of in-
formed and strategic advancement.

The interview study underscores that organizational culture and structure are sig-
nificant hurdles in adopting AI and ML technologies. Fragmentation within the
company, a mixed attitude towards AI/ML, trust issues regarding new technologies,
skill gaps among engineers, and the absence of a cohesive strategic plan for AI/ML
adoption are key challenges identified. Addressing these cultural and organizational
gaps is crucial for successful AI implementation.

4.1.2.2 Data quality

The interviews around AI within the company reveal an important realization: the
true challenge lies not in the technology itself but in the foundational aspects of
data management. This acknowledgment has come to the forefront, especially as AI
pilots have underscored an inadequate understanding and control over the quality
of data. One employee noted that data has not been stored for reuse, analysis, or
training, which has been a persistent issue in AI implementations:

”Data has not been stored for reuse, analysis, or training.” - R15

In response to these challenges, the company has outlined a strategic focus on data
quality, governance, and literacy. This approach is rooted in the belief that the
success of any AI-driven output is contingent on the quality of the input data.
Without high-quality input data, the output will inevitably suffer. As one employee
put it:
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”It’s about ensuring data quality because that’s what we will base every-
thing else on. This is the most important part.” - R18

The importance of organized and accessible data is also emphasized. Much of the
company’s data, particularly analysis data, remains unsorted, with some exceptions
like sensor data which is neatly categorized and prepped for analysis. This unsorted
state presents an obstacle in efficiently leveraging big data for automated processes
[R17]. Recognizing this, the company has prioritized the need to better manage and
structure their data repositories. One employee succinctly highlighted the challenges
associated with data:

”The challenges are often around data classification and how we can use
the data and how we will process the data and how we should have an
infrastructure that really is adapted for the purpose.” - R17

The strategic shift towards a more data-centric approach rather than a purely AI-
focused strategy is informed by past experiences. The realization that an AI strategy
without a solid data foundation is ineffectual has led to a clearer focus: solving core
business problems through better data management rather than relying solely on
AI solutions [R17].

However, the interest in AI is not entirely gone. During interviews, it was evident
that despite limited knowledge about AI/ML, employees are excited about the pos-
sibility of offloading mundane or repetitive tasks to AI systems. This enthusiasm for
automating ”boring” or ”non-stimulative” tasks underscores the potential benefits
AI can offer in enhancing workplace efficiency and satisfaction.

Together, these insights indicate that the company needs robust data management
practices to fully harness the capabilities of AI. Although significant strides have
been made, there remains much work to ensure that data quality, governance, and
literacy are up to the mark to fully realize AI’s potential. The company’s adjusted
strategy reflects a mature approach to technological adoption, emphasizing that the
foundation of data must be solid for AI applications to be truly effective.

4.1.2.3 Infrastructure

In discussing the challenges faced by the company regarding AI/ML implementa-
tion, the topic of infrastructure became an apparent bottleneck. According to the
respondent, the company lacks long-term ownership of its code solutions, which
poses a significant challenge as they consider how to manage and support their soft-
ware over many years. The choice of stable and supportable frameworks is crucial
for sustainable software development [R15].

The respondent further noted that data downloading speeds are a bottleneck due
to limited internet bandwidth. At the company’s site, despite having a 10 Gigabit
internet connection, practical download speeds during peak office hours are much
lower, sometimes around 5MB/s, which significantly slows down data analysis. This
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limitation means waiting many hours for just one analysis to complete, which affects
productivity [R15].
Additionally, the respondent discussed the infrastructure requirements for modern
AI applications, especially when moving beyond traditional machine learning to
more complex models like generative AI and LLMs:

”Mainly infrastructure and...traditional machine learning there are some...Servers
that are able to train for a few hours, but if you go towards more gener-
ative AI and LLMs...Then you need dedicated servers” - R15

Furthermore, the cost of moving and retrieving large datasets to and from the cloud
was highlighted as a significant expense, while the actual training of models on this
data could be relatively cost-effective:

”It’s ’transferring’ and ’retrieving’ the data to the cloud that is expensive,
while ’training’ the model on the data will probably be quite cheap” - R15

The conversation also touched upon the limitations in current hardware capabili-
ties within the company, emphasizing that the existing infrastructure, often reliant
on individual servers or client systems, is not suitable for scaling up AI and ML
operations to a more advanced level:

”If we talk about the process of data on a larger scale, you need certain
hardware that is no longer a standard laptop. What we do today is often
on individual clients or on individual servers and is not scalable up to a
higher level of maturity for AI and ML.” - R15

These insights from R15 clearly illustrate the technological and infrastructural chal-
lenges the company faces. The need for substantial upgrades and investments in IT
infrastructure is critical to enable the company to fully leverage modern AI capa-
bilities and manage data more effectively. These challenges necessitate thoughtful
planning and investment to bridge these gaps and prepare the company for future
technological demands [R15].

4.1.2.4 Knowledge/Skill

For successful implementation, knowledge and skill about the topic must already be
established within the company. The interviews revealed that this knowledge is cur-
rently very limited to a few individuals who are far ahead of the greater mass. They
also showed that the lack of knowledge about the topic and methods is extremely
limited among employees working in product development, for example. However,
there is excitement about using AI/ML as an assistant for mundane tasks.

This section could be divided into two distinct parts. The first part focuses on
AI/ML expertise, highlighting the need for more human capital in the area of
AI/ML implementation on a large scale and to advance research.
The second part addresses the Lack of Knowledge. Many employees regard AI as
a buzzword, yet it is evident they possess limited understanding of what is required,
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how it works, and what the methods are capable of. It is crucial that knowledge
in this area is expanded before implementation to ensure that everyone shares the
same, informed perspective on AI/ML. This will help them be aware of the methods,
limitations, capabilities, risks, and benefits.

Reluctance to relinquish control remains a significant barrier to the adoption of AI
technologies within the company. One respondent noted that while there is a growing
openness to AI and ML, there remains a pervasive sense of naivety and a tendency
to get caught up in the allure of buzzwords without a deep understanding of the
technology [R17]. This shows a lack of information of AI/ML and their capabilities.
In discussions about the progress of integrating AI into more routine and structural
areas, such as reporting, the implementation appears to be very preliminary. A
specific point made was that the use of AI for structural analysis is not currently
standard practice at GKN, indicating a significant area where AI integration could
potentially be expanded:

”As a standard tool and for structural analysis, it is not considered at
GKN.” - R14

Moreover, the adoption of AI and ML within various departments faces additional
hurdles due to a lack of familiarity with these technologies among engineers. This
organizational challenge compounds the difficulty of integrating advanced AI appli-
cations across the company:

”Organizationally, I think it’s difficult because the engineers are not nec-
essarily familiar with the AI/ML techniques.” - R14

Furthermore, when asked about the overall progress of AI integration within the
company, it seems that, while there are individuals with advanced skills and under-
standing, the broader organizational integration of AI is still nascent. The focus has
recently shifted towards a more realistic appreciation of how data can be leveraged
effectively and automatically, moving away from manual processes. One respondent
articulated this transition, emphasizing the modest progress at the enterprise level:

”I would say that we haven’t made much progress if you think about it
on a level of integration. Then, of course, there are individuals who are
far advanced, very competent. But on an Enterprise level? No, I would
say we have just sobered up to our view on how data can be used more
effectively and above all automatically, and not do it manually.” - R17

4.1.2.5 Legal compliance/Data secrecy

One of the major challenges facing GKN relates to the restrictions on where and how
data can be used, particularly due to security and confidentiality concerns. Certain
data cannot leave the premises of GKN, necessitating that all training of models
must occur in-house. This requirement for local processing demands extensive in-
frastructure, complicating efforts to leverage cloud computing and other external
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resources. However, there is an important distinction to be made, as highlighted by
one employee:

Company-internal data can use cloud services, but export-controlled data
cannot. - R15

In addition, there are strict regulations concerning data derived from military prod-
ucts. Such data is highly sensitive and, as another statement clarifies, must not be
processed using external solutions:

Military secret data shouldn’t be processed with these solutions. - R15

Nevertheless, opinions within the company about the flexibility of data use for AI
training vary. For instance, R17 suggests an alternative approach to circumventing
some of these challenges:

”Absolutely outsource the training of models...it’s really just the data that
is sensitive and not the model, we can always anonymize the data, and
far from all data is sensitive”

However, the use of advanced AI technologies such as LLMs faces specific limitations
due to export controls, as noted by another team member:

Export controls limit the use of local LLMs. - R16

Furthermore, contractual obligations also restrict the use of information across dif-
ferent projects, especially when these projects involve multiple customers [R2]. This
limitation affects the ability to aggregate and utilize customer-specific data effi-
ciently. In terms of processing customer-specific data, there is a clear directive that
this should be handled in-house [R14]. Despite this, there is potential to train mod-
els with anonymized data off-site, presenting a possible workaround to the stringent
in-house requirements.

Lastly, ensuring compliance when dealing with regulated data is emphasized as crit-
ical [R18]. Adhering to legal and contractual guidelines is paramount when training
models, further underscoring the need for meticulous data management practices
within the company. These factors collectively influence the strategic decisions
around data handling and AI model training at GKN, reflecting the complex in-
terplay between technology capabilities and regulatory requirements.

4.1.2.6 Technology

There is a vision of generating entire CAD models through advanced AI technolo-
gies like text-to-speech or directly from lists of requirements specifications. This
approach could dramatically transform the design process, providing a streamlined,
efficient method for producing detailed CAD models directly from spoken or written
inputs.
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This section explores where AI technology currently stands according to industry
respondents. It examines what is feasible with today’s AI/ML programs and ap-
plications, and what objectives remain beyond reach. The intention is to discover
potentially overlooked new areas and map out the knowledge landscape of these re-
spondents. Furthermore, this discussion delves into the specific kinds of assistance
that design engineers seek from AI during critical phases such as concept generation
and evaluation.

One respondent, R16, expressed the complexities involved in integrating AI into the
traditional design process, particularly when adhering to established design guide-
lines that reflect the company’s unique approach to model building:

”When it comes to design, we have our own ’design guidelines’ about
how we think a model should be built. This means that it’s something we
really need to train based on our way of thinking. So, that’s probably the
hardest part. To generally build up a CAD geometry from start to finish
is, I believe, a vision or utopia.” - R16

R16 further discussed the potential for LLMs (LLMs) in the design process, par-
ticularly in how they can handle subjective elements that do not require absolute
precision to be effective:

”Generally it’s like the more subjective it is, the better a LLM can per-
form so like if we talk about in a CAD model, you might want to have
texted descriptions for different things. And that text description doesn’t
have to be 100% accurate to be good enough, as long as it describes the
system. Or when it comes to like correlation the like this part that has
been designed matches these parts from the previous years and if they
can find that correlation.” - R16

These insights from R15 and R16 showcase the broad spectrum of applications and
the complex challenges associated with integrating AI in design and engineering.
While there is excitement about the possibilities AI and ML bring to the table,
there is also a recognition of the significant hurdles that need to be overcome, es-
pecially in ensuring that these technologies align with existing company standards
and practices. The discussions underscore the need for a deeper understanding of
how AI tools can be practically and effectively integrated into existing workflows,
enhancing and streamlining the design process while adhering to the nuanced needs
of engineering disciplines.

4.1.2.7 GAS current AI/ML capabilities

GKN’s engagement with AI/ML technologies is evident despite a lack of overwhelm-
ing positivity in initial discussions. Researchers and PhD students at GKN are
deeply immersed in advanced AI/ML projects, reflecting a commitment to explor-
ing and expanding these capabilities within the company. This effort aims to under-
stand what is currently achievable with AI/ML, identify beneficial methods for PD
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processes, and determine the potential for broader integration across the enterprise.

Specific AI/ML applications already in use include the NX platform, which utilizes
machine learning to enhance surface highlighting [R14]. Additionally, tools such as
Office and GitHub CoPilots are deployed to assist in document and code writing,
though they present challenges related to data sharing [R15]. The integration of
machine learning extends into design optimization as well, with applications like
OptiSlang being used to explore design spaces and optimize designs, incorporating
machine learning techniques:

”OptiSlang is used for design experiments and exploring design spaces,
including machine learning for optimization.” - R14

Moreover, there is potential to further utilize AI/ML in areas such as stress reports
and design practices, which could serve as valuable data sources for training models
that provide guidance, particularly for agent-based models:

”GKN could use stress reports and design practices as data for training
models for guidance, especially for agent-based models.” - R14

Research projects are another area where AI/ML is actively applied; for instance,
there is an ongoing project dedicated to collecting images, storing timestamps, and
other process information. This data is integrated and correlated with GKN’s main
data logging system to enhance operational efficiency [R16]. AI/ML’s role in improv-
ing production processes is also significant, as seen in its application for automation
and efficiency improvements through image recognition in GKN’s production lines:

”ML is heavily used with GTC for production, automation, and efficiency
through image recognition.” - R15

Further explorations into generative AI are underway to improve the quality of data
in Health, Safety, and Environmental (HSE) reports, highlighting a proactive ap-
proach to leveraging AI for more accurate and reliable data management [R17, R18].

GKN also considers the potential of using public datasets for on-premise model
training and fine-tuning, thus enhancing the capabilities of their AI systems with-
out compromising the security of proprietary data [R18]. There’s an ongoing discus-
sion about the feasibility and benefits of outsourcing model training using general
aerospace data instead of company-specific datasets. This strategy is considered
potentially valuable for broad applications, even if it might not provide the finely
tuned results that company-specific training would yield [R15].

The level of integration of AI into regular processes, such as report generation, is
still in the early stages—described as being at the ”thesis level”—with researchers
looking into applications of technologies like OpenAI [R15]. While some individuals
within the company show advanced skills and competence in AI, the broader or-
ganizational adoption is still maturing. The company is gradually moving towards
a more data-driven approach, aiming to automate data usage more effectively and
reduce manual interventions [R17].
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In terms of data privacy and security, GKN is considering outsourcing model training
while ensuring sensitive data is anonymized, thus maintaining confidentiality while
still advancing their AI capabilities [R17]. This combination of internal advance-
ment and strategic external collaborations underscores GKN’s balanced approach
to developing and implementing AI/ML technologies.

4.1.3 Benchmarking study
The purpose of the benchmarking study was mainly divided into three parts: 1) Gain
access to current state of the art of AI implementation in industry, and compare
this to where GKN currently stands, 2) Take part of other organizations motiva-
tions for implementing AI, 3) Take part of lessons learned from companies being
successful/unsuccessful implementing AI. In total, 3 organizations were interviewed
as part of the benchmarking study. The companies interviewed were GKN Fokker,
SKF and a large life-science company in a heavily regulated industry who wants to
remain anonymous. This company will thus be referred to as C3 onwards.

4.1.3.1 GKN Fokker - R19

AI implementation:
In terms of AI implementation at GKN Fokker, they create software, mainly Python
modules to automate various steps in the wiring design process. They aim to auto-
mate tasks that are either highly repetitive or complex and extract knowledge from
experts and create Python applications to support these tasks. However, looking
specifically at the design process, they are working with AI more as a general con-
cept:

“In the design process, we are not really working with machine learning,
but more with AI as a broad definition. We include traditional AI like
design of experiment algorithms or optimization algorithms in our work.
The more automation modules we create, the more we can explore opti-
mization aspects. We’re looking into different design of experiments and
optimization algorithms, mainly within the defined project.”

One specific example of how they utilize AI is when they are designing and optimiz-
ing signal routing for their harnesses:

“One example is the signal routing module, which is a bit like Google
Maps for designing our harnesses. It helps us route signals from A to B,
considering constraints and ensuring signals go over harnesses that match
their criteria. We also deal with shielding, grounding, and optimizing
the selection of components to create the best solution, whether it’s the
lightest or cheapest.”

The key driver for GKN Fokker to implement AI is mainly to make the process
quicker or the product more optimal, aiming for cheaper, lighter and safer solutions.
In their research and development department, AI and ML is actively considered
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and actively looked into, although still indeed with caution. They bring up AI-
support like ChatGPT and its many interesting applications, but also mention that
programs like this are still not necessarily trustworthy even though the results you
get might seem like it.

Challenges and lessons learned:
The main challenge GKN Fokker brings up when trying to implement AI has been
centered around the abundance of AI-support on the market and state the following:

“The opportunities and the options out there are so broad. So there’s so
many, many different ways in which AI could help you, so many different
algorithms out there, and it’s sometimes a bit difficult to choose what is
actually the most suitable for me.“

In order to overcome this challenge, they state talking to people has been the most
effective:

“For the first challenge, the easiest way to overcome it is just by talking to
people and see what other people and learn from their experience. If you
Google about it, there’s always so many things you find you never know
what’s trustworthy necessarily. But if you have some good colleagues,
whether it’s internal colleagues or external companies we collaborate
with, that’s often a bit more of the trusted source.“

GKN Fokker also bring up more specific optimization challenges related to their
domain:

“There are a lot of optimization algorithms out there that deal with
a lot of continuous variables, and it’s often a bit more tricky because
we deal with a lot of non-continuous variables or categorical variables.
Then, often you’re more pointed towards generic algorithms, for example,
which can have quite some problems with speed. So, finding the best
way to deal with categorical variables is also, I guess, is the challenge
we often come across. To deal with this, there is often much trial and
error.”

Other challenges encountered when implementing AI are for example, when tools
and software become more and more complex, it can be difficult for people to still
understand what is going on. Another challenge is related to ChatGPT and gen-
erating code. If you want to use ChatGPT, for example, for generating code for
you, you never actually know where that code is coming from. It could actually
be coming from a licensed source and you’re not actually allowed to use that code.
Lastly, getting IT on the same page as you can take a lot of time and and thus being
an obstructing factor. They also state that they still have not overcome most of the
challenges.
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Benefits:
When it comes to metrics measuring the success of AI, they mainly look at whether
it saves time or creates more optimal solutions. In specific processes, they have seen
time reductions somewhere between 50% and 80%, considering AI as automation.

“If we consider AI as automation, we’ve seen significant time savings
in specific processes, reducing the time required. I would say definitely
somewhere from 50 to 80% time saved in some cases.”

However, R19 mentions that optimization potential within design is harder to quan-
tify and consequently, harder to give an honest comparison of.
Required for AI implementation:
When discussing what is necessary to successfully implement AI, GKN Fokker high-
light the importance of people and having the right competence in the organization:

“If you have direct experience with AI, that helps. But other than that,
I think it’s often just having people with a good abstraction view. Let’s
say people that can look at processes as a whole. That can look at the
big picture on how everything is connected because I think that is often
required to be able to decide how best to apply different types of AI or
different types of algorithms.”

Data:
In general GKN Fokker store data on an internal server. Sometimes, they will have
a cloud solution but in that case, it will be an internal cloud. On rare occasions,
they make use of external clouds, but then they need to completely make sure that
they don’t upload military data.

They are working with LLMs, but are solely developing models in-house.

Future plans:
Looking into the future, GKN Fokker want to investigate more into optimization
algorithms and design of experiments. Looking more at machine learning, they have
two ongoing research projects:

“One of the projects we have is looking into the conceptual design phase,
where you often have quite a big lack of data. We would also be interested
in looking at how machine learning can help us predict some of the
missing data early in projects.”

GKN Fokker also want to highlight that AI is not necessarily about replacing people
with AI-solutions, but more about ensuring the designs meet safety requirements
and are optimal, considering trade-offs between various factors.

4.1.3.2 SKF - R20

AI implementation:
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For SKF, the main objective is to develop digital solutions to support their ap-
proximately factories and boost them digitally. They are working with the ISA-95
pyramid with its several layers. At the bottom, are their factory floors with lean
processes where they connect machines and sensors, and as you move up the pyra-
mid it becomes more abstract. At the top are their ERP systems with all product
orders and in between this, are for example connectivity layers and data warehouses.
SKF are making solutions throughout the entire ISA-95 pyramid:

“So we’re making solutions throughout this ISA-95 pyramid, which means
we’re looking at: How do you connect machines? How do you create data
pipelines? How should the data be processed? And then, you can use
it in ML models, for example. One is like predictive maintenance, i.e.
you predict where you have deviations. Or you’re trying to optimize
parameters, so it’s kind of two different perspectives.”

SKF is also working with Microsoft Copilot and find it especially useful for tran-
scribing and summarizing Teams meetings, especially from a project management
perspective. They are also working with GitHub Copilot to make programming
more efficient.

Furthermore, SKF is working with AI to capture and create value from handwritten
notes in their manufacturing facilites:

“We have systems where maintenance technicians write notes, but these
are unstructured from a database point of view. But they are struc-
tured, mentally. With LLMs, we can actually draw a connection, even
from these handwritten notes. And that means that if we have thousands
of such handwritten notes in Swedish in the factory, now all of a sudden
they’re available in a structured way, in all languages, to everyone. And
that builds on the fact that then we can start using it in different solu-
tions. For example, for a chatbot for maintenance technicians. And it
doesn’t matter if you’re in Mexico, China or Sweden.”

The way SKF implement AI-solutions into the organization is through ”spikes”,
where they on a small scale, in specific applications try things out to learn:

“So it’s not like we’re developing some big solution that we’re going
to roll out globally, but we’re still very much in the Exploration and
Discovery phases, so to speak.”

SKF is also looking into building their own, internal, Large Language Model where
they can upload manuals and documents but this is still in the early phase.
Furthermore, the interviewee gave insights into previous experiences at other orga-
nizations:

“I’ve worked at Ericsson, Volvo, Polestar, SKF and I’ve been to quite
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a lot of AI conferences. And realized that we are quite far ahead when
it comes to AI. And the main reason is the values and norms here. As
well as the fact that people here adopt technology quite quickly and have
a great interest in technology. That is the main thing. We have senior
managers who sit and run Home Assistant and connect their entire house
and assemble all the sensors. And I’m talking really senior managers.
And when top managers have genuine technical interest, that creates a
driving force to implement AI.”

However, they do not use AI for concept development or product development.

The key driver to implement AI at SKF is primarily to assist ”white collar workers”
who are less experienced. They mean that really sharp experts don’t have much to
gain from AI because they are so talented so it’s hard for AI to match that knowl-
edge when we look at cutting-edge technology.

Challenges and lessons learned:
One challenge associated with AI and LLMs according to R20, lies in their tendency
to generate erroneous information confidently, asserting applicability even when it
may not always hold true. This approach is ineffective in a factory setting. Having
a model that is 99% accurate is still not enough. Ensuring reliability is crucial, as
failure to do so can result in significant costs.

Another challenge highlighted by R20, is related to the pace at which AI is evolving
and the preasure this puts on orgnizational structures:

“One challenge is that AI is evolving extremely fast. But in organiza-
tions, you have budget structures, organizational structures that can’t
keep up with that pace. If you look at when we develop an internal
SKF co-pilot, there is someone who does it as a hobby and spends an
hour or so on the side. And all of a sudden, you have 100 people who
are standing and want support to install this. And then there are no
budgets and there are no structures to handle this.”

The interviewee occasionally attends AI conferences where the shortage of AI com-
petence is highlighted:

“Something that is highlighted at AI conferences is the large skill gap
when it comes to AI. How do companies ensure that they have enough
AI skills? Because this is a huge shortage. Right now, you have a large
number of young talents who are interested and want to start working
with AI. But there are only a few really good data scientists who can be
coaches and mentors for all the young people. And how do you match
this up at the company? Because you need to get up to speed in building
your AI skills, i.e. machine learning.”
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Lastly, there seem to be a general challenge centered around data engineering, data
science and data management in order to ensure high quality models. According to
R20, only a few possess the right AI competence, and if everyone is going to need
AI support, there is an enormous amount of data that needs to be processed, be of
high enough quality and the competence to handle this is today not sufficient.

Benefits:
According to R20, it’s too early to tell whether they can see any general, mea-
surable, improvements from starting to implement AI support. However, in some
specific areas, you can get subjective assessment regarding improvements from AI
implementation:

“You can get subjective assessments with the programmers. Some might
say they save 50% or 80% of their on certain elements. But then you get
to work with other tasks instead. So it doesn’t go that much faster just
because of that. It may be more efficient, but we can’t measure that.
It’s too early.”

Required for AI implementation:
In order to succeed with A implementation, the organization needs to be equipped
with a balanced infrastructure:

“I would say that this is a very boring answer, but we need a balanced
infrastructure. If you take every sensor that gives thousands of readings
per second and then you push all that data into the cloud. Then you
get an incredibly slow solution that will cost a lot because you shovel a
lot of data completely unnecessarily, a very long way.”

The way SKF work with data is through a three-phase process called ETL, short
for ”Extract”, ”Transform”, ”Load”. The ETL process involves extracting data from
various sources, transforming it into a standardized format, and loading it into the
next step. At SKF, they have ETL processes at every level. At the factory floor,
they have edge computers where they have to decide what data they need to process
and how to process it before sending it to the next step. They also have to consider
what data could and should be processed on the computer and what data should be
uploaded to be processed in the cloud. Determining what data is needed at every
level, and how it should be processed at every level, is what R20 means by having a
balanced infrastructure. The following quote describes an example from the factory
floor at SKF:

“You need to understand what to do with the data at each stage. Cur-
rently, we’re exploring what we refer to as edge computing. This involves
deploying computers capable of capturing data such as vibrations or
acoustic emissions, using sensors to detect when, for instance, a grinding
wheel makes contact with metal for grinding purposes, enabling real-
time signal analysis. We’re dealing with a significant volume of signals
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per second, down to milliseconds, to accurately determine when the disc
contacts the material. Subsequently, this data needs to be fed into a
machine learning model, processed, and then utilized to control the ma-
chine once again. It’s of course an extreme scenario, often termed high
frequency.“

With high frequency, everything needs to happen on right away, locally, in real time,
on the factory floor. There is no time to upload the data to a cloud and process
it. You could also collect data i batches and send it, but this is a different scenario
and is not applicable for high frequency scenarios. According to R20, every case is
different and there is no template or right or wrong way of how to process data. A
lot depends on the use case and if it is a high frequency or low frequency process.

Data
The primary method of storing and securing data at SKF is through the utilization
of Azure Cloud and Microsoft’s ecosystem. R20 mentions that several other orga-
nizations use Multicloud, but this it not something SKF has decided to work with.
SKF store a lot of data externally but there is a lot to consider when storing data
this way:

“There’s much to consider regarding storing business-sensitive informa-
tion in clouds. Then, when comparing it to the alternative of either
having your own on-premises data center or storing information in the
cloud, it’s actually more secure when it’s in the cloud, considering all the
security capabilities that Microsoft and they have there. What if a fire
starts? At Volvo, for example, there we had two data centers on each
site in case there was a fire on one of them.“

Furthermore, R20 brings up ChatGPT and that there is a lot to consider before
using its many capabilites, and they can’t us ChatGPT however they want, as this
might leak company-sensitive information. If they intend to utilize ChatGPT skills
or capabilities, they must do so through SKF to ensure that they do not inadver-
tently disclose internal information

R20 also wants to highlight that is does not matter how much data you have, if it
isn’t contextualized and lack time stamps and meta data.

Lastly, a final word by R20 at SKF describing a more general view on AI:

“I probably won’t be replaced by AI, but I may well be replaced by
someone who is skilled at using AI, so it’s essential for me to understand
that tool. It’s like today. Would you hire a person who brings the
phone books when looking for a number, or hire a person who goes on
the internet to look up the phone number? So if you’re not part of the
development, then you’ll be left behind; that’s how it is.“ - R20
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4.1.3.3 Lifescience company

AI implementation:
The interviewee, R21, holds the position of quality manager at C3. He approaches
AI implementation from a quality perspective and describes its relevance to his work,
rather than focusing on how AI is implemented across the entire organization. R21
use AI support in two main areas:

“I utilize AI in two main areas. The first is predictable quality, which
involves predicting quality problems before they occur or escalate. This
entails correlating data using machine learning techniques. Additionally,
it’s about accessing not only numerical sources but also non-numerical
sources through NLP, which stands for Natural Language Processing.
Currently, there’s a project underway focusing on this.“

The second area is related their management system:

“The second area is related to our management system, which consists
of about 1000 documents that have grown over 30-40 years. As a human
being, you have a lot of bias. With ChatGPT, we rewrite these in a
better way.“

R21 continues to state that C3 has more opportunities than they have money, and
that it’s always a competition about which product to choose or which projects to
run. With growth companies, this is always the case, which puts high demands on
productivity and this is where AI is assisting, according to R21.

R21 is also involved in innovation projects around ChatGPT where C3 has purchased
a base model and a knowledge base, placed it inside the walls of the organization,
and integrated it to their infrastructure. They have also disabled the learning of the
model.

The key driver to implement AI is mainly to increase productivity and find infor-
mation more efficiently. However, R21 want to make it clear that they have still not
implemented AI fully into the organization and there is still much business to do
before. How AI is supporting in specifically the PD-process, R21 can’t disclose, but
only that it is related to evaluation of concepts.

Challenges and lessons learned:
There is a lot of discussion regarding challenges related to AI today at C3. One
challenge brought up by R21 is related to LLMs and how complex it is to under-
stand how the data is being used:

“There are numerous discussions taking place in that regard, which can
be challenging. With AI tools such as ChatGPT or their equivalents,
once you train them and feed them data, you lose control. The in-
formation gets absorbed into the model, becoming fragmented and un-
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traceable. Subsequently, you relinquish control over its usage. From a
commercial standpoint, there are risks regarding business perspectives
that must be considered.“

Additionally, there are legal obligations concerning data. Given that C3 manage a
substantial amount of personal data, stringent laws and ethical considerations come
into play. Moreover, compliance with EU legislation is imperative. These factors
impose significant constraints on their operations. The largest danger is that per-
sonal and company-sensitive data is leaked.

Benefits:
C3 have still not implemented AI fully into the organization, which makes it difficult
to give exact figures or measurable benefits. However, strictly looking at productiv-
ity in PQS, R21 can see a 80% decrease in time.

R21 can also see huge improvements with their verification testing. They can go
from not understand anything, to understand in something in three minutes. Look-
ing at predictive quality and ability to predict failures, they are able to avoid large
costs.

Data:
At C3, cyber security is very strict who has access to certain data is extremely reg-
ulated:

“It is extremely controlled, who has access to particular data. My or-
ganization has full access. But those who do those studies do not get
access to the data, until the study has been done to avoid human error
and influence.“

R21 goes on to highlight the role of data quality and its importance to succeed with
AI:

“If you don’t have the right data quality, you will never succeed with AI.
There has to be incredible discipline when it comes to data quality and
data integrity.“

4.2 Outcome of literature study

This section will explore the outcomes of the literature study, delving deeper into
the possibilities and opportunities of integrating AI/ML into concept development,
specifically in the areas of concept generation and concept evaluation.
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4.2.1 Large Language Models in Concept Development and
Generation

Large language models (LLMs) have revolutionized the field of nautral language
procesessing (NLP) and increasingly influence various sectors beyond academic cir-
cles. These models lead the performance across numerous benchmarks in natural
language understanding (A. Wang et al., 2019).

Engineering is a field rich in knowledge, poised for significant advancements through
the adoption of cutting-edge techniques from the NLP sector. (Göpfert et al., 2023)
suggest that foundation models like LLMs are capable of supporting creative reason-
ing tasks within the engineering design process, thereby augmenting and meshing
with traditional computational approaches such as topology optimization.

Furthermore, (Gomez et al., 2024) work show that there is promise in using LLMs
when generating CAD-models by prompts, which is an important aspect in concept
generation and development. The research use text-to-CAD to illustrate this and
comes to the conclusion that the use cases in their research show that LLMs can be
applied at the System Level and Detail phases of the product design process. The
authors also state that LLMs used to design complex systems and geometries, is an
area where there is limited research currently.

This section aims to research what other applications of LLMs in Concept Genera-
tion and Development can be found in the current literature.

4.2.1.1 AutoTRIZ - Ideation with LLMs

Intuitive and structured ideation methods such as brainstorming, morphological
analysis, and mind-mapping (Camburn, Arlitt, et al., 2020) play crucial roles in
enhancing the creative ideation processes among human designers for concept gen-
eration. Among these methodologies, the Theory of Inventive Problem Solving
(TRIZ) (Altshuller, 1999) stands out as a prominent approach extensively utilized
for systematic innovation. TRIZ offers a knowledge-based framework designed to
solve engineering problems by addressing technical contradictions through inventive
principles derived from a vast patent database.

Despite its benefits, the usage of TRIZ at GKN has been intermittent. The direc-
tives of ideation given in OMS, is primarily used for quality control instructions,
traditionally and does not support creative or synthetic directives. Moreover, the
intricacies of TRIZ resources pose significant cognitive challenges, affecting how
effectively individuals can learn and apply the methodology. Therefore, the effec-
tiveness of TRIZ is substantially dependent on the users reasoning abilities and their
familiarity with its principles, as demonstrated by studies integrating NLP (Guarino
et al., 2022; Hall et al., 2022).

The use of Set-Based design methods at GKN highlights the importance of thor-
oughly exploring the design space and progressively refining it as additional infor-
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mation becomes available. This method underscores the significance of expansive
initial ideation before converging on feasible design solutions.

Recent advancements in technology, particularly the development of LLMs, are re-
shaping the landscape of ideation and innovation. LLMs are increasingly employed
to process extensive design documentation, represent designs in specialized formats,
and identify user needs for product development (Qiu & Jin, 2023; B. Wang et al.,
2023). These models have also been utilized to distill design-related knowledge from
extensive reports and documents (Qiu & Jin, 2023) and to decompose conceptual
design tasks into Function-Behavior-Structure (FBS) formats, facilitating ideation
across different aspects (B. Wang et al., 2023). Furthermore, (Han et al., 2023)
introduced an LLM-based attribute-sentiment-guided summarization model to ex-
tract user needs from online product reviews, demonstrating the versatility of LLMs
in capturing and utilizing user-generated content.

One significant innovation is the development of AutoTRIZ (see Figure 4.3), an
LLM-based intelligent tool that automates the TRIZ methodology (S. Jiang & Luo,
2024). AutoTRIZ begins with a problem statement from the user and automatically
generates a detailed solution report, which explains the reasoning process based on
TRIZ and the solutions derived. This tool reduces the entry barrier to TRIZ by
eliminating the need for extensive training, thereby lowering the cognitive load and
accelerating the ideation process (Ilevbare et al., 2013).

Figure 4.3: The process flow in AutoTRIZ (S. Jiang & Luo, 2024).

LLMs have shown extensive potential in various engineering fields, including mi-
crofluidic devices (Nelson et al., 2023), robotics (Stella et al., 2023), and web user
interfaces (A. Li et al., 2023). These models, especially those in the GPT series,
possess a broad knowledge base that can significantly aid in ideation and innovative
problem-solving across multiple domains.
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Looking forward, the framework implemented in AutoTRIZ could be extended to
automate other knowledge-based innovation methods. For example, the application
of LLMs to utilize design heuristics identified from thousands of design outcomes
could further enhance ideation quality and innovation (Yilmaz et al., 2016). By inte-
grating various ideation methodologies into LLM reasoning modules, a more robust
and versatile tool could be developed, potentially transforming the field of design
and engineering innovation.

4.2.1.2 Generative Design with AI

Generative product design tools, often integrating AI, are transforming early-stage
design by allowing for the exploration of complex shapes challenging for human de-
signers to conceive or perfect alone (Chandrasegaran et al., 2013). In this thesis,
when generative design are mentioned, it is the generative design of a product using
a commercially available design tool with algorithmic computation to achieve com-
plex goals within the aspects of product design.

(Saadi & Yang, 2023b) defines generative design as something that involves the
collaboration of human designers and algorithmic computation to achieve complex
goals with superior results than that of each entity when creating independently.
Furthermore, the work by Saadi and Yang (2023b) focuses on generative design
where the optimization tool takes on a larger function in the design process.

Generative design tools in the design process can take on many forms with varying
levels of involvement from the tool. The design process can be driven by the de-
signer, with minor involvement from computational tools in tasks such as ideation
or analysis. For example, Autodesk DreamSketch uses a generative design algorithm
to produce multiple 3D sketches based on a designer’s initial problem definition. On
the other hand, the generative design process can have more substantial tool in-
volvement, as is the case with many commercially available generative design tools.
The commercially available design tools mentioned in the work by (Saadi & Yang,
2023b) is primarly Fusion 360, CATIA, NTopology and a unnamed Design Space
Exploration tool.

Designers input design goals and specifications into the tool. The tool will explore
possible solutions and generate several valid designs that meet the requirements. In
this process, generative design tools can be used to take on many tasks in the design
process, including idea generation and product optimization. Generative design in
which the design tool takes on a more active role has the potential to drastically
change the design process while leading to more creative geometries.
Traditionally used in later design stages, these tools are now highly beneficial from
the beginning, significantly impacting design processes and outcomes. For exam-
ple, General Motors utilized Autodesk’s Fusion 360 Generative design to create
a seat bracket that was both 40% lighter and 20% stronger than its predecessor,
merging eight components into a single 3D printed part (Briard et al., 2020). This
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highlights how AI can enhance product performance beyond original capabilities,
merging human creativity with machine efficiency (Saadi & Yang, 2023b). The role
of generative design extends to redefining tasks traditionally handled by designers,
such as concept generation and product optimization. By setting early specifications,
manufacturing methods, and product architecture, designers enable these tools to
generate multiple viable outputs, altering traditional design approaches significantly.

The integration of these tools also influences designer behaviors, such as their com-
munication and confidence, and can lead to alterations in generated designs to en-
hance aesthetics (Krish, 2011; Zhang et al., 2021). The design process may range
from minor tool involvement in ideation to substantial roles in systems like Au-
todesk DreamSketch, which generates multiple 3D sketches from a designer’s
initial inputs (Kazi et al., 2017). To further exemplify, Fusion 360 has a generative
design option where, users can define design goals and constraints, such as mate-
rial usage, manufacturing limitations, and performance requirements. The software
then uses AI algorithms to generate multiple design options that meet those criteria
(Autodesk, 2024).

Drawbacks of AI in the design process: While AI tools like generative design
can significantly aid in ideation and early-stage design tasks, studies by Lopez et
al. (2018) highlight some challenges. For example, while AI can produce numer-
ous practical ideas, it occasionally fails to completely match the subtle details of
human-set design briefs. Vlah et al. (2020) explored how topology optimization and
generative design are implemented in industrial settings, finding that these tools
require engineers to substantially rethink their approach to setting up the design
space. Computational tools influence early-stage design significantly, particularly in
terms of aesthetics, enabling designers to explore specific shape grammars through
parametric models (Alcaide-Marzal et al., 2020).

Designers in Generative-Driven Design: The cognitive processes and collabo-
rative dynamics of designers are critically shaped by their interaction with generative
design tools. Song, Soria Zurita, et al. (2020) emphasize that computational tools
can profoundly impact designers’ exploration strategies and the final designs. This
interaction necessitates an adaptive approach from designers as they navigate the
new landscape of AI-driven design tools, requiring them to adjust parameters and
design approaches as projects evolve (Vlah et al., 2020).

Changes in collaboration styles and communication strategies significantly influence
design processes and outcomes. For example, studies have shown that AI tools can
either enhance or disrupt team dynamics depending on how these tools are integrated
into the design process (Phadnis et al., 2021; J. ( Zhou et al., 2020). The design of
AI tools themselves can also significantly impact how designers interact with these
systems and the effectiveness of the resulting designs (Chaudhari & Selva, 2023;
Pillai et al., 2020). Therefore, understanding how to effectively utilize AI within the
design process is essential for capitalizing on its potential benefits while mitigating
its challenges.
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4.2.1.3 Computational engineering design

Today, the digitization of engineering design is well advanced. In the past, technical
drawing was performed on drawing boards until software for computer-aided design
(CAD) was developed in the second half of the twentieth century, which is generally
adopted today (Göpfert et al., 2023). Currently, finite element analysis, topology
optimization, design-support tools for additive manufacturing, and more are used.
With model-based systems engineering and digital twins, the PDP became centered
around digital models. Virtual and augmented reality enables visualization and in-
teraction with designs. Due to the breadth of the field, only a brief overview of
advances in computational engineering design can be given here, focusing on design
generation, design strategy learning, and NLP (in particular LLMs) for engineering
design.

In recent years, the intersection of deep learning and mechanical design has seen re-
markable progress, transforming the conceptualization and realization of 3D struc-
tures (Jadhav & Farimani, 2024). The capability to generate 3D structures from
diverse input modalities, including text (Nichol et al., 2022; Sanghi et al., 2022),
images, and sketches (C. Li et al., 2022), has expanded the possibilities and made
the field of mechanical design more accessible and versatile. However, a notable lim-
itation is that these models are not inherently designed to account for mechanical
specifications or functional constraints.

NLP tasks include text generation, compliance with specific task directives (J. Zhou
et al., 2023), and the demonstration of emergent reasoning capabilities (Huang &
Chang, 2023). Given the significant computational resources required for training
and fine-tuning LLMs for specific downstream tasks, these models have demon-
strated an exceptional ability to generalize to new tasks and domains. This adapt-
ability is achieved through the in-context learn ing (ICL) paradigm, which has sig-
nificantly deepened our understanding of LLMs’ capabilities. By utilizing minimal
natural language templates and requiring no extensive fine-tuning, LLMs have es-
tablished themselves as efficient ”few-shot learners” (Perez et al., 2021).

In chemistry, LLMs independently design, plan, and execute complex experiments
(Boiko et al., 2023). In mathematics and computer science, they have solved long-
standing issues such as the cap set problem and improved algorithms for the bin-
packing challenge (Romera-Paredes et al., 2024). LLMs also contribute significantly
to biomedical research (Thapa & Adhikari, 2023) and materials science (Xie et
al., 2023), enhancing scientific understanding and capabilities across various fields
(Göpfert et al., 2023). Furthermore, they effectively optimize foundational prob-
lems like linear regression and the traveling salesman problem, often outperforming
custom heuristics with simple prompts (Yang et al., 2024).
In mechanical engineering, the fine-tuned LLM has showcased proficiency in re-
trieving knowledge, generating hypotheses, conducting agent-based modeling, and
linking various fields through ontological knowledge graphs [91]. Moreover, LLMs
have successfully automated the creation of initial design concepts by integrating
domain knowledge (Makatura et al., 2023; Q. Zhu & Luo, 2023). Additionally,
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LLMs display robust skills in design-related tasks, including sketch similarity analy-
sis, material selection, analysis of engineering drawings, CAD creation, and tackling
spatial reasoning problems (Picard et al., 2023).
The authors (Jadhav & Farimani, 2024) present a framework that leverages in-
context and few-shot learning, along with LLMs’ inherent reasoning and optimiza-
tion capabilities, for structural optimization, particularly in truss design. This ap-
proach allows LLMs to generate and iteratively refine design concepts with minimal
input, effectively optimizing structural outcomes. Additionally, the versatility of
LLM-based optimization in processing categorical data marks a significant shift
from traditional optimizers that focus on numerical data.

Generative adversarial networks (GANs), feedforward neural networks, variational
autoencoders, as well as reinforcement learning systems have been used in design-
related generation tasks such as topology optimization or shape synthesis based
on visual modalities such as images, voxels, and point clouds (Regenwetter et al.,
2022). Other work focuses on learning design strategies. Given a state in solving
a truss design problem, Raina et al. (2021) predicts what actions humans perform
next. Gyory et al. (2021, 2022) analyze real time data of design teams to suggest
measures from a predefined list if the communication or action frequency appears
to be too low.

In design research, NLP has been applied to requirements extraction, ontology con-
struction, patent analysis, and more (Siddharth et al., 2022). Using foundation
models such as LLMs or pre-trained multi-modal models in the engineering design
process is a recent and unexplored topic (Göpfert et al., 2023).

Several studies have experimented with using LLMs to provide designers with inspi-
rational stimuli for ideation. In three explorative studies, S. Jiang and Luo (2024),
Q. Zhu and Luo (2022), and Q. Zhu and Luo (2023) prompted GPT-2 and -3 to
generate design concepts (text-to-text) based on the description of either a concept,
problem, or analogy in both a fine-tuning and few-shot learning setting. Simi-
larly, Q. Zhu et al. (2023) fine-tune GPT-3 for bio-inspired design concept gen-
eration. Ma et al. (2023) compare design solutions generated with GPT-3 with
crowdsourced ones. And S. Jiang and Luo (2024) used GPT-4 for synthetic TRIZ
ideation. Other work has focus on design concept evaluation combining Google’s
pre-trained language model BERT, and image models in a multi-modal one (Song,
Miller, & Ahmed, 2023; Yuan et al., 2021). Song, Zhou, and Ahmed (2023) provided
an extensive overview of multi-modal machine learning for engineering design. They
outline possible applications, but focus on lower level tasks such as text-to-shape or
shape-to-text synthesis.

4.2.1.4 The Design process: a goal-oriented argumentative conversation

Digital artifacts include shapes, assembly processes, stress distributions, flow pat-
terns, and more. Until now, however, computer-aided engineering, as practiced in
industry, has not included the creative and argumentative process of the PDP itself.
It is argued that this process could be digitized and partially automatized next, and
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it is outlined how this can be achieved (Göpfert et al., 2023).

Many steps in the PDP are performed using computation and are not based on hu-
man thought alone. However, humans are needed to integrate these computational
processes, such as calculations, simulations, or optimizations, into a meaningful su-
perior PDP. Human thought and world knowledge are required to reduce the solution
space in advance and to come up with original ideas that have not been modeled to
be computationally accessible before. For example, when a bicycle is designed, the
starting point is not a blank slate but an idea of how a bicycle looks and how it has
worked well for over a century. If a standardized aerodynamic tube shape across
bicycle manufacturers is proposed, it is unlikely that this idea originated from a
numerical optimization (Göpfert et al., 2023). Instead, background knowledge and
the ability to think and reason are used. Solving engineering problems requires an
argumentative dialogue. As such, argumentation is inherent to the PDP. Experi-
ments, calculations and similar activities, inform the dialogue to provide information
necessary for PD, thus argumentation is an essential part of the design process.

Göpfert et al. (2023)argues that a goal-driven, argumentative dialogue is at the core
of the design process, and propose that it should be represented as a digital artifact.
Humans communicate, argue, and reason using natural language. Hence, the argu-
mentative dialogue can be represented in textual form.

Many parts of the design process, however, cannot be represented as text. Thus,
the design dialogue is distinguished from external actions (such as performing an
experiment or simulation) and other engineering artifacts (such as a drawing, or 3D
model). It is formulated that external actions are invoked from within the design
dialogue and in turn inform the dialogue, either directly or indirectly, by yielding
other engineering artifacts that inform the design dialogue (See Figure 4.4).

Representing the argumentative dialogue as a digital artifact would improve the
documentation of the design process. Instead of only archiving the results of pro-
cess steps (e.g., CAD files or the results of simulation runs), the reasoning process is
documented and hence archivable. For a past development process to be efficiently
used for the development of a new product generation, past decisions and alterna-
tives must be accessible. Having the reasoning process explicitly documented makes
past design decisions traceable. Furthermore, making the reasoning process explicit
could improve collective reasoning and therefore collaborative design. Finally, it
would allow for machines to participate in the reasoning process.

4.2.1.5 LLMs as the argumentative designer

LLMs and multi-modal models, capable of processing natural language, seamlessly
integrate into the largely natural-language-based argumentative dialogue, whether
it occurs within or between individuals. World knowledge plays a crucial role in
facilitating human interaction and narrowing down solutions to foster creativity.
Preliminary findings indicate that LLMs develop comprehensive world representa-
tions, even though they are trained on straightforward objectives (K. Li et al., 2023).
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Unlike humans, who may be limited by their existing knowledge when employing
analogical or biomimetic design approaches, LLMs learn to mimic extensive knowl-
edge during training. Large-scale LLMs demonstrate robust performance across var-
ious reasoning tasks and can execute sequential reasoning processes (J. Wei et al.,
2023). Multi-modal models handle diverse design representations essential through-
out the product development cycle, including text, tables, sketches, and 3D models
(Song, Zhou, & Ahmed, 2023). Furthermore, many engineering design tasks surpass
the capabilities of pure thought, requiring specialized software and databases, such
as CAD and simulation tools, and patent and material databases. Recent studies
show LLMs capability to autonomously interact with APIs, enhancing their utility
in engineering applications (Schick et al., 2023)

In conclusion, these models are fundamentally suitable for supporting engineering
design dialogue. However, a singular model application provides limited benefit.
Instead, these models should be integrated into a framework designed to address
complex engineering challenges (Göpfert et al., 2023).

Figure 4.4: Example of design process with an argumentative dialogue (Göpfert
et al., 2023).
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4.2.1.6 LLMs as an assistant in the design process

There are several studies that show how well LLMs, such as GPT-4, perform as
personal assistants. Writing reports, e-mails, taking notes, mind-mapping, idea
generation, and summarizing large portions of text are all examples of what an
LLM can help with as an assistant (Picard et al., 2023). However, studies depicting
LLM assistants that can be useful in the design process specifically in an aerospace
application are far less.

A study at the German Aerospace Center (DLR) by Reitenbach et al. (2024) devel-
oped an intelligent workflow engine using an AI chatbot. This system merges tra-
ditional workflow management with AI, providing a customizable and user-friendly
solution for workflow generation. The chatbot, acting as a natural interface, sim-
plifies interactions and enhances usability. This new methodology is integrated into
the GTlab software framework, aimed at process automation and collaboration in
aircraft propulsion systems.

The AI chatbot were asked to perform various tasks in the integrated workflow.
First, the performance and flexibility of the engine were validated through four
sub-workflows, each representing unique challenges with specific features and re-
quirements. These workflows demonstrate the engine’s ability to manage tasks,
like serial and parallel processing of multiple inputs, highlighted in the following
scenarios:

• Case A: ”Calculate the value y if x is known”, tests linear sequences.
• Case B: ”Calculate the value z if q and m are known”, examines parallel

structure handling.
The evaluation process measured LLM runtime, total workflow creation time, and
success rate across different models, including GPT-3.5-Turbo, GPT-4, and GPT-
4-Turbo. The tests, performed under varied settings and times, aimed to eliminate
time-specific biases. The newer models, particularly GPT-4 and GPT-4-Turbo, con-
sistently produced the desired outcomes, though complex structures slightly lowered
the success rate (Lv et al., 2023).

The system’s effectiveness was further highlighted through a detailed example in-
volving the compressor system’s thermodynamic calculations. It needed specific
inputs like inlet enthalpy (Hin) and entropy (PSIin) to compute outlet conditions
such as temperature (Tout) and pressure (Pout). This involved calculating the ideal
specific compression work (∆Hid) from the actual work and isentropic efficiency,
and the outlet enthalpy (Hout) from these computations. The steps were repeated
to validate the accuracy of the methodology in interpreting and structuring complex
workflows based on user prompts and inquiry such as ”Predict compressor outlet
conditions from compressor inlet parameters, work, and efficiency”.
Moreover, the system demonstrated robustness in adapting to various query struc-
tures and technical terminologies. The ability to interpret complex prompts and
seamlessly integrate workflow elements shows the systems potential in enhancing
technical workflow management (Reitenbach et al., 2024).
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Figure 4.5: The workflow the LLM is asked to perform correct inquiries in (Reit-
enbach et al., 2024).

However, challenges remain in handling intricate workflows and selecting optimal
components from extensive libraries, pointing to future areas for development. These
include fine-tuning LLMs for specific tasks and integrating additional functionalities
to streamline information retrieval and processing (Lv et al., 2023).

In conclusion, the study by (Reitenbach et al., 2024) showcases the significant po-
tential of AI-enhanced workflow engines in technical domains, with the adaptability
and precision required to handle complex engineering tasks effectively.

4.2.2 Limitations with LLMs in Concept Generation and
Development

The research identified multiple constraints associated with the application LLMs
in concept generation and development. Consensus among the authors reviewed
in this study highlights these limitations. The limitations, cited by key articles on
”LLMs in Concept Generation and Development,” are presented below:
Limitations:

• Interpretability: The generated concepts are not guaranteed to be valid or of
good quality, and the development of automatic metrics for evaluating and
filtering these concepts is hindered by the lack of a defined quantitative scale
for validity (Q. Zhu & Luo, 2023).

• Generalizability: It is challenging to generalize different tasks and associated
knowledge necessary for real-world design concept generation due to the need
for diverse and extensive datasets (Q. Zhu & Luo, 2023).

• Extendibility: Extending the method to different tasks is limited by the ab-
sence of open, high-quality engineering design datasets (Regenwetter et al.,
2022).

• Lack of Baselines: The study lacks existing methods for comparison, compli-
cating the evaluation of AI-generated design concepts (Q. Zhu & Luo, 2023).

• Formalizing Engineering Design dialogue: Current approaches to understand-
ing how outputs are formed in deep neural network models are inadequate,
as LLMs largely remain black boxes, complicating the formalization of the
engineering design dialogue (Beitz et al., 1996; Fricke, 1996).

• Interface Requirements for LLMs: Today’s LLMs require engineering software
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tools to provide a textual interface, limiting the use of tools that cannot adapt
to this requirement (Schick et al., 2023).

• Correlation of Skills and Representations: LLMs struggle to develop repre-
sentations corresponding to essential engineering skills such as good spatial
imagination and a solid understanding of physical processes due to their re-
liance on textual data (Fricke, 1996).

• Hallucinations: Both ChatGPT and Bard (Google’s LLM) Display a signifi-
cant drawback referred to as ”Artificial Hallucinations,” where the AI produces
seemingly realistic outputs that do not correspond with actual data (Alkaissi
& McFarlane, 2023). Specifically, ChatGPT, particularly when processing a
large amount of unsupervised data, is prone to such hallucinations (Alkaissi
& McFarlane, 2023). This issue emerges from its predictive nature in gen-
erating subsequent words, which can lead to content that is inaccurate and
hallucinatory (Huh et al., 2023). Concerns about ChatGPT have been raised
in critical sectors like education and healthcare, highlighting its inaccuracies
and the potential for hallucinated outputs (Hosseini et al., 2023). Research
indicates that approximately 45% of responses from ChatGPT are inaccurate
(Heck, 2023), and around 30% of research proposals generated by ChatGPT
exhibit hallucinated content (Athaluri et al., 2023).

Similarly, the same authors discussed the subsequent steps that is required to be
solved to ensure the success of an implementation of this kind:

Future Work:
• Developing an Interpretability Scale: Focus on creating a scale to measure

how much sense a generated concept makes and exploring the relationship
between interpretability and the concepts’ novelty and usefulness (Q. Zhu &
Luo, 2023).

• Improving Generalization Capabilities: Addressing the limitation of gener-
alization in AI models by potentially using a dataset with adequate design
knowledge and reasoning (Q. Zhu & Luo, 2023).

• Expanding Framework Applicability: Customizing available data to teach ad-
ditional design reasonings and extend the framework’s applicability (Regen-
wetter et al., 2022).

• Specifying Evaluation Metrics and Datasets: There is a call for design-specific
metrics and public datasets to evaluate and compare models’ performance,
especially in participatory tasks within the argumentative design dialogue (Ma
et al., 2023; Regenwetter et al., 2023; Song, Miller, & Ahmed, 2023; Q. Zhu &
Luo, 2022).

• Enhancing Machine-Actionable Interfaces: Future research should focus on
adapting interfaces of specialized engineering software to meet the evolving
needs of LLMs and multi-modal models (Schick et al., 2023).

• Refining Human and Computational Evaluation Metrics: Establish more re-
fined rubrics and explore new methods for computational assessments of design
solutions. There’s a need to assess the usefulness and feasibility of designs,
which currently rely on expert evaluations (Ma et al., 2023).

• Investigating Prompt Engineering Techniques: Future studies should inves-
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tigate how designers can use existing prompt engineering techniques to aid
early-stage design ideation and explore other LLMs’ effectiveness using devel-
oped methods (J. Wei et al., 2023).

4.2.3 AI in aerospace applications
The study performed by Hassan et al. (2024), published in April 2024, a review
over 300 publications in the area of AI and aerospace. An interesting and highly
important note is that this publication does not mention LLMs or NLPs at all. Fur-
thermore, the authors highlight a notable absence of AI/ML methods in the specific
area of design, addressing this under ”Research Gaps: Design and Optimization”
which is particularly relevant to this thesis. They also outline potential research
areas for AI/ML in design and optimization, such as innovational constraints, sub-
optimal solutions, and inefficient resource utilization.

In the context of AI in the aerospace sector, prior research has explored motiva-
tors to AI adoption, overall technological, security, and economic factors. Studies
have identified machine learning Yairi et al. (2017) as essential for the successful
integration of AI in aerospace (Aksit et al., 2023), particularly noting the sector’s
data-rich environments is favorable for deep learning. Predictive analytics from ma-
chine learning are acknowledged for their role in advancing new aircraft technologies
and commercial innovations.

Machine learning and soft computing are pivotal in enhancing aerospace firms ca-
pabilities to analyze consumer needs, evaluate new product market potential, and
uncover new market opportunities (Ahmad, 2019; Guraksin & Ozcan, 2023). These
technologies allow firms to utilize big data to create customized services and prod-
ucts (M. Wang et al., 2019). Despite the increasing need for data-driven insights,
the swift advancement of AI technology poses challenges to the timeline and ex-
tent of AI adoption. AI adoption in aerospace could revolutionize business models
but also introduces substantial challenges such as significant R&D investments, the
establishment of industry-wide AI standards, and ethical concerns including job dis-
placement and data privacy (Hassan et al., 2024).

Incorporating AI into aircraft systems offers significant benefits but also presents
new risks that must be carefully managed. An exhaustive strategy covering the
entire AI lifecycle—from data collection and model development to deployment is
vital for mitigating risks and ensuring AI’s safe application in aerospace (Becue et
al., 2021). Effective data governance and data quality are crucial to maintain the
reliability of AI systems. Ensuring data integrity to train and operate AI systems
necessitates robust data governance, with data-cleaning techniques crucial to elim-
inate biases and errors from AI models (Mirchandani & Adhikari, 2020). Ongoing
investment in AI research is required to meet the rigorous safety and security de-
mands of the aerospace industry Ali et al. (2020), enabling the sector to protect
against AI-related risks while capitalizing on potential advancements in transporta-
tion, production, and exploration.

74



4. Results

(Hassan et al., 2024) also mentions a few imitations of integration of AI in aerospace
companies. Stating that integrating AI is an incremental process requiring a process-
oriented approach to fully comprehend factors influencing its acceptance and im-
pacts. Longitudinal studies are advocated to grasp the cognitive dimensions of inno-
vation and decision-making. Employing hybrid methods like sequential exploratory
strategies can address identified research gaps. Additionally, interdisciplinary re-
search combining various engineering fields is recommended to enrich understanding
and application of AI in aerospace.

4.2.4 Integration and use of AI in aerospace applications
In the article by Reitenbach et al. (2024) they seek to create a enhanced work-
flow management system (WfMS) in aerospace application by implementing an AI
ChatBot. When integrating they used the API RESTful provided by OpenAI. REST
(Representational State Transfer) is a widely used architecture for communication
between distributed systems using the HTTP protocol. This integration involves
the implementation of a special class, the LLM-Handler, within the workflow en-
gine. The LLM-Handler is responsible for managing interactions with the LLM,
including the preparation and processing of prompts. To access the OpenAI API,
users of the framework must store a personal authentication key, this key is essential
for ensuring secure and personalized interaction with the system. In addition, users
can select the specific LLM model they want to work with from a range of available
options (e.g. GPT-4, GPT-3, etc.). Depending on this selection, the LLM-Handler
configures the appropriate API endpoint. The LLM-Handler also provides the abil-
ity to adjust various parameters of the LLM, such as temperature and topp These
adjustments allow the response dynamics of the LLM to be more finely controlled
and optimized (Holtzman et al., 2019). The temperature parameter in the context
of LLMs such as GPT-4 is a crucial factor in controlling the creativity and unpre-
dictability of the produced responses. This parameter is part of the probabilistic
nature of LLMs and has a significant influence on how the model responds to a given
prompt. The temperature parameter can typically be set between 0 and 2. At lower
values, the model tends to produce more certain, predictable and focused responses.
This means that the model is more likely to generate text that more closely matches
the most common patterns in the training data. Low values of temperature are ap-
propriate for applications where accuracy and clarity are important. Higher values
encourage more creative, varied and unpredictable responses. The model is there-
fore more willing to take risks and use unusual or less common word combinations.
High values of temperature are useful when creativity and variety in responses are
desired (Reitenbach et al., 2024). Moreover, in the integration performed at DRL,
they use the Model Based System Engineering (MBSE) system.

Within MBSE, the necessary vocabulary for the creation of system models can be
provided by the Systems Modelling Language (SysML). SysML, a standardized do-
main specification language for modeling complex systems, was developed by the
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Figure 4.6: SysML to XML conversion (Reitenbach et al., 2024).

Object Management Group. It originated from the adaptation of the Unified Mod-
eling Language (UML), which is a widely recognized language for software modeling.
In the GTlab framework, the MBSE paradigm is facilitated through a specialized
data processor tasked with organizing and managing the data. All data objects
conform to a predefined, standardized object type, ensuring consistent data struc-
turing (Reitenbach et al., 2024). New data objects are integrated using SysML block
definitions, which provide a structured and standardised way to extend the system.
Then, the SysML format is converted into XML-code in order to provide the LLM
with all relevant information. In addition, this includes instructions to the format
of the response, specifically structuring the proposed workflow information in JSON
(JavaScript Object Notation) format (see Figure 4.6).

These format specifications are essential as they enable the workflow engine to parse
the LLMs responses and prepare them for further processing. JSON is a data ex-
change format that is both readable and writable by humans. It is also parsable
and generatable by machines. JSON has become a widely accepted, language-
independent standard used in a wide variety of applications and services to exchange
data. The advantage of using the JSON format in this case is that there is no need
to instruct the LLM in a complicated format definition. This reduces both the con-
text size and the error inclination.

Output verification: in the extended workflow engine, the validation of LLM re-
sponses by the validator is essential for ensuring accurate workflow configuration.
Initially, the LLM-Handler receives a response string, which is processed to extract
JSON data. This data, containing details about workflow elements and their con-
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Figure 4.7: The proposed workflow with an integrated LLM, and LLM-handler
(Reitenbach et al., 2024).

nections, is crucial for configuring the workflow accurately.

The validator then checks this JSON data to ensure all components and connec-
tions suggested by the LLM are feasible and correct, utilizing meta-information
from SysML specifications. If discrepancies are found, the validator produces clear,
human-readable error messages, pinpointing issues like non-existent tools or incom-
patible connections. This clarity in communication leverages the LLM’s strength
in processing natural language, facilitating a better understanding of errors and
enabling more precise adjustments in subsequent responses. These error messages
are sent back to the LLM-Handler, prompting the LLM to refine its suggestions.
This iterative process continues until a valid workflow is achieved or a set number
of iterations is reached. If validation fails beyond this point, the workflow creation
is deemed unsuccessful.

Upon successful validation, the workflow factory initiates the actual creation of the
workflow based on the LLM’s validated suggestions. This rigorous validation process
ensures that only feasible and correctly configured workflows advance, enhancing the
reliability and efficiency of the entire workflow creation process.

Data Collection, Cleaning, and Annotation: the creation of an annotated
aerospace corpus is of immense importance because it serves as a labeled dataset
to fine-tune the LLM (Tikayat Ray et al., 2024). The first step toward creating
a corpus consists of collecting aerospace-domain texts. Since BERT is pretrained
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on English Wikipedia and BookCorpus (Devlin et al., 2019), it already has some
exposure to the aerospace domain from articles about aircraft, airlines, aircraft man-
ufacturers, aviation safety, etc. Hence, this effort augments BERT’s aerospace lan-
guage understanding by collecting scientific aerospace texts and narrows the focus
to requirements by gathering examples of requirements from the Federal Aviation
Regulations (FARs). (Tikayat Ray et al., 2024)

Tikayat Ray et al. (2024) have performed a study where the LLM BERT was as-
signed to extract aerospace requirements from text. In the study, they have docu-
mented how they have fine-tuned the pre-trained BERT to gain the best possible
results in the study. The result is in this study aeroBERT. Different variants of aer-
oBERT were developed by fine-tuning the BERT variants on the annotated corpus.

A test set of 20 aerospace requirements was created to test aeroBERT and demon-
strate the automatic creation of a glossary of terms. The requirements was grouped
in the different categories System (e.g exhaust heat exchangers, powerplant, aux-
iliary power unit), Resource (e.g Section 25–341, Sections 25–173 through 25–177,
Part 23 subpart B), Organization (e.g DOD, Ames Research Center, NOAA), Value
(e.g 1.2 percent, 400 feet, 10 to 19 passengers), and Date-time (e.g 2013, 2019, May
11,1991 ).

aeroBERT was able to identify 62.5% of the SYS, 100 % of the RES, and 50% of
the DATETIME named entities. Finally, the performance of aeroBERT-NER and
BERT aerospace text was compared. aeroBERT was able to identify 71% (32 out
of 45) of the relevant named entities. BERT, however, was unable to identify any
named entities apart from two subwords (Tikayat Ray et al., 2024). To be of value,
however, a language model needs to be fine-tuned to recognize aerospace-specific
terms (Tikayat Ray et al., 2024).

4.2.5 Prompt engineering
The result of the LLM depends essentially on how precisely and effectively instruc-
tions or questions are formulated. Prompt engineering is about formulating content
in such a way that the LLM achieves the best possible results (P. Liu et al., 2023;
White et al., 2023).

In the case of Reitenbach et al. (2024) study, the user input, namely the request to
the AI to create or modify a specific workflow, is sent to the LLM-Handler via a
corresponding input panel within the graphical user interface of the GTlab frame-
work. The user can also select existing workflows or sub-workflows and attach them
to the request. This initial workflow setup can be modified or extended by the LLM
depending on the user instructions.

The LLM handler utilises the functionalities of the workflow engine’s data model
to transform the setup into a corresponding text format, which is also used for the
output created by the LLM for the proposed workflow. In order for the LLM to
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understand how to handle the user input, the corresponding context must first be
established in a series of preceding prompts before this input is processed. This spe-
cial prompt engineering technique is referred to as chain of thought (J. Wei et al.,
2023).

J. Wei et al. (2023) discovered that this approach improves the LLM ability to answer
a complex problem by about 58%. Consequently, the information and instructions of
the pre-prompt of the LLM-Handler are transmitted to the LLM in individual steps.
The respective response of the LLM is appended to each subsequent transmission
in the background in order to utilise the additional thoughts gained by the LLM. It
turned out that the chain of thought approach and the way the LLM can respond
greatly increases the success rate of the creation of the desired workflow.

4.2.6 Information and knowledge reuse
Effective design processes rely on skilled personnel, efficient information gather-
ing, and knowledge reuse to produce high-quality outputs, emphasizing the critical
importance of these elements (Tikayat Ray et al., 2024). In aerospace, where re-
quirements engineering is complex and critical, the ambiguity of natural language
can lead to costly errors. Early detection and rectification of these errors during the
requirements generation phase are essential (Dalpiaz et al., 2018). A NASA study
underscores the high costs of addressing late-stage issues in requirements engineer-
ing, emphasizing the need for early intervention (Haskins et al., 2004). Industry data
also shows that many defects and rework efforts stem from errors in requirements
engineering, with safety-critical systems being particularly vulnerable (Firesmith,
2007).

Given the complexity of modern systems, in this context MBSE systems, an in-
tegrated approach to system development is crucial to manage the challenges of
large-scale systems effectively (Ramos et al., 2011). Additionally, as systems are
used over longer lifespans, there is a significant need for reuse of design and analysis
documents to support, maintain, and modernize these systems. Current methods do
not fully capitalize on the reuse of engineering knowledge and artifacts, necessitating
a shift to new management methods for engineering files, documents, analysis, and
data packages across enterprises. If successful, this could enhance agility in design,
manufacturing, and system deployment, reducing costs and risks (Kambhampaty
et al., 2024).

Organizations are reevaluating how information is stored and retrieved throughout
a product’s lifecycle due to the increasing complexity of multidisciplinary designs
(Fafchamps, 1994). Reuse, defined as any process that applies previously gener-
ated work products to new, unrealized goals, plays a crucial role in this context
(Sametinger, 1997). Learning from past work to evolve system designs is a common
form of reuse in science and engineering, often requiring rework and adaptation
(Trujillo et al., 2020).
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Reusing components, models, data, and knowledge brings numerous benefits. It
increases confidence in product performance, enhances engineering efficiency, and
speeds up the acquisition process by focusing efforts on creating new work prod-
ucts rather than rediscovering or recreating existing ones (Kambhampaty et al.,
2024). Reuse also aids in knowledge integration across different research and devel-
opment environments, fostering cross-pollination between directories (Nightingale,
2000). Moreover, it reduces the risk in systems by minimizing the need to design
components from scratch (Cusumano & Nobeoka, 1998). Leveraging existing tools
and data relevant to a program decreases research and development costs and time,
streamlining the path to market (Kotlarsky et al., 2008). With structured and
accessible information, less time is spent on version control discussions, thereby ac-
celerating market readiness (Kambhampaty et al., 2024).

LLMs can be a facilitator for knowledge reuse and has the potential to improve
automation in knowledge engineering work due to the richness of their training data
and their performance at solving NLP tasks (Walker et al., 2024).

Example use case:
In collaboration with the U.S Air Force Research Laboratory, the case study by
(Kambhampaty et al., 2024) employs a novel methodology for reusing a vehicle
model within the RAAGE datapackage. This approach involves developing a Data
Curation system that leverages a graph database built from an uncurated data pack-
age, enabling effective extraction and organization of metadata and relationships.

The methodology’s ultimate goal is to quantify labor hours saved by applying Digital
Engineering and Digital Curation (DC) principles. This is achieved by developing
and implementing a practical methodology for curating data packages and facili-
tating information sharing within an organization. To assess its effectiveness, key
metrics such as precision for information retrieval tasks and qualitative usability
ratings are introduced.

The RAAGE dataset, stemming from previous AFRL-sponsored research, includes
digital artifacts relevant to the design, construction, and operation of attritable air
vehicles, supporting air interdiction (AI) and intelligence, surveillance, and recon-
naissance (ISR) drone missions. This dataset aids in evaluating proposed design
solutions by aligning with sponsor needs and inputting specific architectural re-
quirements.

The study contrasts two reuse approaches: a traditional reuse case and a curated
effort using the new methodology. In the traditional approach, engineers rely on
existing repository structures and associated reports, navigating through files using
standard tools. In the curated approach, a graph database with Neo4j visualization
is utilized, improving access to metadata and relationships.

Three reuse tasks assess the impact of extending an aircraft’s range by 20%:
1. Designing an aircraft capable of completing a mission with the increased range.
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2. Estimating the cost per aircraft for the enhanced range.
3. Calculating the campaign cost per kill for the extended range.

The study by Kambhampaty et al. (2024) finds that several tasks in their pipeline
are well-suited to machine-learning frameworks, particularly those involving the clas-
sification of metadata keys. This often involves designing representations of infor-
mational constructs for models to perform classification tasks effectively. Advances
in large-language models, especially zero-shot classifiers, suggest potential for au-
tomating much of this process. However, robust methods are needed to assess these
models’ performance against human metadata writers in classification tasks.

Additionally, the challenge of deduplicating data when used as training material
for these models is noted, alongside questions about the most suitable tasks (clas-
sification, generation, graph-based property prediction) for the metadata currently
being generated. Over time, the aggregation of data regarding the usefulness and
the number of times artifacts are reused could inform the development of predictive
models. These models could forecast the utility of new or unlabeled artifacts based
on metrics like the Summation of Search Queries.

Despite the boredom associated with metadata creation and access, significant ben-
efits are observed when these tasks are integrated and visualized within a graph
model, demonstrating the value of this approach in enhancing data management
and usability.

4.2.6.1 LLMs in complex system design, use case on aeroengine compo-
nents

Previously mentioned (Gomez et al., 2024) explores the possibility of generating
CAD models by utilizing LLMs. Two use cases are presented, highlighting design
processes and results with LLMs. These cases, relevant to aerospace, involve an
aircraft OEM and a first-tier aeroengine component supplier. The OEM’s use case
demonstrates visualizing system architectures with UML diagrams. The supplier’s
case shows LLMs generating aerospace CAD models through verbal instructions.

ChatGPT can automate configuration rules for architectural design, generating sys-
tem architectures from required functions, and was used in the study by (Gomez
et al., 2024). Using an aircraft hydraulic system as a case study, the process includes
defining configuration rules, translating them into UML diagrams, and generating
Python code to produce design diagrams. The deterministic and inspectable nature
of the code is crucial.

The geometry generation use case demonstrates using LLMs to update aerospace
structural components, like modifying a flange geometry on a Turbine Rear Structure
(TRS). LLMs enable non-CAD experts to update component geometry quickly us-
ing verbal instructions, interacting with CAD software through a Knowledge-Based
Engineering (KBE) system (ParaPy). The process involves:

• Model Conditioning: Provide general instructions on the task.
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• Few-shot Prompting: Describe geometrical steps and corresponding KBE code.
• Use Case Execution: Verbalize new geometrical definitions and receive corre-

sponding KBE code from the LLM.
This method allows instant CAD geometry updates without requiring team mem-
bers to be CAD or KBE experts, as demonstrated by automatically generating CAD
and Finite Element Models for the TRS component.

The results from Case Study 1 demonstrate that the model can understand user in-
tentions, execute tasks, generalize concepts, and has knowledge in diverse areas like
UML and Python. Case Study 2 results shows that the GPT-4 model understands
geometrical entities and relationships and can generate KBE code with minimal user
input. These capabilities are available without custom machine learning training,
supporting the hypothesis that LLMs can assist designers with minimal input.

This study confirms the success of using LLMs in aerospace concept generation,
though several iterations and prompt versions were needed to generate valid re-
sponses. In aerospace applications, repeatability and solid justification are essential
for certification and airworthiness, posing additional challenges. More research is
necessary to explore how LLMs can interact with designers without undermining
their responsibilities.

Engineering designers must remain accountable for their designs, and LLM-generated
results cannot be fully trusted on their own. This risk can be mitigated by combin-
ing existing engineering tools with LLMs: tools perform calculations, while LLMs
configure them. Although LLMs can generalize and adapt, they lack awareness of
specific company or project procedures. Embedding necessary knowledge through
fine-tuning the model would be beneficial.

4.2.7 Example: ChatGPT-4V capabilities in design process
environments

In a study by (Picard et al., 2023), GPT-4V was tasked with various design process
activities. Previous research by (Ma et al., 2023; Q. Zhu et al., 2023) examined
earlier versions like GPT-2 and GPT-3. Another study by (Reitenbach et al., 2024)
found GPT-3.5’s performance unsatisfactory. Thus, evaluating GPT-4V, the latest
vision-based model, is crucial for design tasks. GPT-4V boasts over 100 trillion
parameters compared to GPT-3’s 175 billion, enhancing its capability to handle
complex tasks and generate nuanced text. It excels in "few-shot" and "zero-shot"
scenarios, understanding nuanced instructions and aligning responses with user in-
tentions, while reducing hallucinations and bias.

The study examines GPT-4V’s effectiveness in the areas, Design Descriptions, Mate-
rial Selection, Engineering Drawing Analysis, CAD generation, Topology Optimiza-
tion, Fluid Dynamics Simulation, and Design for Manufacturing.

Design description and sketches
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GPT-4V excelled at matching design sketches to textual descriptions and generating
descriptions from sketches. With complete sketches, including handwritten text,
it matched descriptions perfectly. Without the text, accuracy averaged 5.33/10,
highlighting the importance of combining text and visuals. Removing the "None of
the above" option improved accuracy to 7/10.
The model also effectively generated descriptions from low-quality sketches, accu-
rately describing form and function, such as a belt and pulley system. However,
engineers should verify outputs to avoid hallucinations. GPT-4V’s capabilities can
aid in creating searchable design catalogs and generating multimodal datasets.

Material selection:
GPT-4V performed well in general material selection but struggled with specific nu-
merical criteria. It shows promise for broad material family selection in engineering
design, particularly in preliminary phases and as an educational tool. However, it
needs improvement in handling precise data and complex synthesis, requiring careful
oversight in practical applications.

Engineering drawings and CAD generation:
GPT-4V showed mixed results in interpreting and generating CAD from engineering
drawings. While it generally recognized components, it often misinterpreted details,
such as consistently misidentifying a blind hole as a through hole, achieving accuracy
in only one out of nine experiments. However, it successfully extracted all required
dimensions in every trial, labeling them correctly 66% of the time, resulting in an
average performance score of 96% for dimension extraction and labeling.

In CAD generation, GPT-4V struggled, producing accurate models on the first at-
tempt in only one of nine cases. Subsequent iterations failed to improve accuracy,
with persistent errors, such as confusion about hole extrusion direction due to in-
consistent dimension labeling.

These findings suggest that while GPT-4V can assist with preliminary design, its
precision in detailed CAD tasks is limited. Future research should focus on improv-
ing GPT-4V’s precision in interpreting detailed drawings and generating accurate
CAD models, enhancing training, integration with CAD software, and iterative feed-
back mechanisms.
Quantitative performance metrics from the experiments showed:

• GPT-4V correctly described a part with a hole in 1/9 experiments when it
recognized a ”rectangular block with a cylindrical hole.”

• In dimension extraction tasks, GPT-4V perfectly scored in 6/9 experiments
for extracting dimensions, though it often mislabeled them, especially the hole
depth.

• CAD generation was notably poor, with correct CAD produced on the first
attempt in only 1/9 experiments using CadQuery, and persistent errors in
subsequent iterations across different scripting languages.

Topology Optimization:
GPT-4V shows a basic understanding of topology optimization principles but strug-
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gles with detailed interpretations and accurate linkage of diagram sections. It often
misinterprets load depictions and specific diagram elements, indicating a superficial
grasp of complex visual data.

In precise quantitative tasks like estimating material percentages, GPT-4V’s initial
attempts were inaccurate. However, using a Python script improved its accuracy,
suggesting coding tools can enhance its performance. GPT-4V can identify struc-
tural elements in optimization diagrams and respond to engineering queries, but it
sometimes fails to recognize the importance of floating or disconnected components.

Fluid Dynamics
GPT-4V demonstrates a strong understanding of fluid dynamics, effectively identi-
fying and analyzing key parameters and flow regimes. However, it has limitations in
applying this knowledge precisely to specific simulations. GPT-4V effectively distin-
guishes between laminar and turbulent flows in CFD simulations, correctly identifies
transient regimes, and interprets parameters like Reynolds and Mach numbers. It
can compute accurate values using given data, such as estimating the Reynolds
number correctly.

In laminar flow analysis, GPT-4V correctly identifies features like Mach number and
slower flow patterns but inaccurately suggests shock waves at a maximum Mach
number of 0.3, indicating a gap between theoretical knowledge and practical appli-
cation.

In transient regime analysis, GPT-4V accurately recognizes vortices and transitional
flow behavior around an airfoil, noting significant boundary layer effects and the mix
of laminar and turbulent flows. It prudently seeks more data when uncertain.

GPT-4V’s ability to process and analyze visual information from CFD outputs is
promising but inconsistent. While it identifies general dynamics and parameters
accurately, it struggles with specific simulation details and sometimes misinterprets
shock waves and boundary layer effects. Its vision capabilities enhance its utility in
engineering tasks requiring both theoretical knowledge and visual data interpreta-
tion.
Design for Manufacturing (Design for Addative Manufacturing)
GPT-4V’s performance in Design for Manufacturing (DfM) tasks was limited, par-
ticularly in additive manufacturing contexts. The model never fully answered any
of the DfM queries accurately, often providing overly cautious or incorrect responses
regarding manufacturability.

Additive Manufacturing
GPT-4V consistently predicted that designs would not be manufacturable by addi-
tive methods, regardless of their actual feasibility. This uniform negative response
occurred across all 60 queries. Even for designs adhering to 3D printing rules, GPT-
4V incorrectly suggested violations. It struggled to identify rules by their assigned
numbers, correctly identifying violations in only 13 out of 30 problematic designs.
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For subtractive manufacturing, GPT-4V identified basic machining features in im-
ages correctly in 12 out of 20 cases but performed inconsistently, especially with
complex designs. This led to potential misjudgments where precision is crucial.

Overall, GPT-4V’s overly cautious approach in additive manufacturing led to over-
estimations of challenges and inaccurate assessments. In subtractive tasks, while it
recognized some features, its inability to handle complex geometries indicates it is
not yet reliable for detailed technical evaluations without human oversight.

4.2.8 ZDM with AI assistance
The authors (Leberruyer et al., 2023) highlights that there are several different
tools, techniques, technologies, and methods for working with ZDM. The Table 4.1
below illustrates the main techniques that the authors (Caiazzo et al., 2022; Foivos
Psarommatis & Kiritsis, 2020; Powell et al., 2022) have identified as having increased
interest with the introduction of Industry 4.0.

ZDM Techniques Description

Artificial intelligence Data-driven techniques for automated data
analysis and decision making

Architecture and Standards Integration and communication protocols
of industrial software

Big data analytics Elaboration, analysis, and visualization
of the massive amount of industrial data

Cyber-Physical Systems
and digital solutions

Control strategies combining
physical and digital resources

Digital inspection and monitoring Solutions for the measurement and
monitoring of product and process resources

Digital Twin combined with
simulation and modelling

Optimization and decision support
for processes

Extended Reality and
visualization technology

Visualization of information to improve
decision making processes

Failure Mode and Effect Analysis
Approach for identifying possible failures in a
design, a manufacturing or assembly process,
or a product or service.

Process mining
Providing better understanding of process
variations that can be decreased and
improved

Table 4.1: Table showing the different ZDM techniques the meaning of them.
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4.3 Concept evaluation
Fundamentally, the main purpose of design work is ultimately to “devise
courses of action aimed at changing existing situations into preferred
ones" - Simon (2019)

4.3.1 AI supported decision-making and evaluation
The initial milestone in AI development was the creation of an intelligent machine
capable of emulating human decision-making in chess game play. Since then, the
utilization of AI in decision-making processes has stood out as one of the most signif-
icant applications in the history of AI (Dwivedi et al., 2021). Researchers in design
has thus for a long time also acknowledged the potential of AI tools to revolutionize
the practices of engineers in the design field. For instance, design engineers can
harness AI to facilitate more automated and intelligent extraction and representa-
tion of knowledge, aiding in early-stage design ideation and to uncover solutions to
challenges that for a long time remained unsolved (Allison et al., 2022).

Moreover, current AI-algorithms are capable to significantly augment the effective-
ness of later-stage system design tasks, particularly those entailing complex, high-
dimensional and interrelated detailed design decisions (Allison et al., 2022). AI
is argued to play a pivotal role in aiding designers to assess and enhance design
concepts according to predefined criteria, including cost, performance, and manu-
facturability. Through sophisticated algorithms, AI can scrutinize design concepts,
proposing alterations or enhancements to optimize them for the desired outcome.
By analyzing data and offering insights into the design process, AI empowers design-
ers to make well-informed decisions regarding design choices (Khaleel et al., 2023).
Today early phases are generally heavily dependent and influenced from the experi-
ence and intuition of designers, and this can create constraints on the design-process
due to human cognitive limits. This creates opportunity for AI to support, where
human processing capabilities are note sufficient (Allison et al., 2022).

An article by Yüksel et al. (2023) wanted to investigate current progress in AI ap-
plications related to design engineering and concept development, during the last
15 years. They found that for a considerable duration, expert systems, fuzzy logic,
artificial neural networks, and genetic algorithms have been the predominant meth-
ods utilized in the evaluation and optimization processes of design. Nonetheless,
the utilization of modern data-driven techniques such as machine learning and its
sub-discipline, deep learning, has surged in recent times within the design domain.
Various other AI methodologies can also be deployed across different stages of the
design process, including idea generation, concept formulation, evaluation, optimiza-
tion, and decision-making processes (Yüksel et al., 2023).

Additionally, the findings of Picard et al. (2023), indicate that GPT-4V can effec-
tively assist human designers by identifying crucial factors in the design process.
While GPT-4V can generate criteria similar to traditional methods, its outputs of-
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ten require further refinement, such as the categorization of subcriteria. Although
GPT-4V grasps the concept of a Pugh chart and formats it correctly, its hesitance
to complete the chart without extensive data highlights a limitation. This sug-
gests that while GPT-4V is helpful for organizing and starting the concept selection
process, human input is essential for thorough analysis and decision-making. For
practitioners, this means VLMs like GPT-4V are useful in early design evaluations
but need careful management and more information for complex decision-making
tasks.

4.3.1.1 Human bias mitigation

No two designers are the same and abilities and preferred styles of working can differ
a lot. Experience level also heavily influences the early development process. Thus,
early development is influenced by several human factors, such as intellectual abil-
ities, domain knowledge, detail oriented or not, attitudes towards risk-taking etc.
(Lubert, 2005).

An article by Pan and Zhang (2021) investigating AI in construction engineering
management found several benefits from AI, one of which being the ability to man-
age human bias. When manual labor is part of the work process, there is a risk
of human human bias impacting that process. According to the authors, AI can
automate project management and remove human obstacles such as bias, making it
more objective. The technology behind this is machine learning algorithms, utilized
to intelligently analyze extensive data sets, uncovering hidden knowledge. These
algorithms facilitate automated data-analysis and decision-making, by being inte-
grated into project management software. This ultimately provide tacit knowledge
from previous projects and enhancing understanding of the current project (Pan &
Zhang, 2021). While this work does not provide a technical take on how human bias
is removed, it indicates a general capability of AI.

An article by Yuan et al. (2022) looked at state-of-the-art in concept evaluation and
found that performing subjective concept evaluation methods demand substantial
manual input, thereby potentially constraining the range of concepts that can be
feasibly assessed. Yuan et al. (2022) acknowledges several types of ranking methods
that have been tried to evaluate concepts but few have incorporated data-driven ap-
proach to incorporate user needs. They claim that current state-of-the-art in concept
evaluation still is based on subjectively choosing concepts based on the judgement
and expertise of designers. The case studied is footwear.

A comprehensive multimodal design evaluation regression model is proposed (DMDE)
by Yuan et al. (2022), aimed at providing designers with a precise and scalable fore-
cast of the overall desirability and attribute-level characteristics of novel concepts.
This prediction is derived from extensive user reviews of existing designs. The
DMDE model works by utilizing a cutting-edge deep neural network-based model,
ResNet-50, pre-trained on Image-Net and later fine-tuned to process orthographic
views of existing products. Textual inputs in the shape of product descriptions is also
processed by the model using a cutting-edge deep language model, a bidirectional
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encoder from transformer, which undergoes fine-tuning on an extensive product de-
scription dataset. Images and text is thus the training data. The result is a better
informed concept evaluation process with promising performance (Yuan et al., 2022).

Traditionally, conceptual design within aerospace is also influenced by subjectivity.
Crossley (1999) studied conceptual design within the aerospace discipline and state
that even though designers are provided with several computational tools to assist
in design evaluation, human subjectivity tend to influence the process. The author
acknowledges that out of all design phases, the conceptual design phase is the most
difficult as there is typically no starting point. They mean that a set of require-
ments lacking physical representation must be converted into a device that meets
these requirements. Creating this starting point necessitates that the designer em-
ploy experience and intuition (Crossley, 1999). This statement is further recognized
by Eres et al. (2014), studying the challenging conceptual design process of aircraft
and aircraft components. They bring up decision-making for concept selection and
highlight some traditional methods such as "Pugh charts" and "Quality function
deployment" (QFD), the latter being the most widely used and accepted method.
However, QFD relies heavily on subjective judgment when building a house of qual-
ity (Eres et al., 2014). Furthermore, conceptual design within aerospace engineering
tend to be influenced by dynamic customer requirements (Mavris & Pinon, 2012).
Requirements within this discipline are also usually in conflict with each other, mak-
ing it difficult to come to a decision on what concept to peruse with. Decisions also
take into consideration more than just technical aspects. Consequently, the final so-
lution may vary from one decision maker’s perspective to another (Mavris & Pinon,
2012).

An article by Khaleel et al. (2023) looked into AI applications in design engineer-
ing and acknowledges that conventional concept evaluation can be extremely time
consuming were AI methods enable objective and swift evaluations, leading to sub-
stantial time and cost savings. The authors also recognize optimization and finding
the best product configuration based on several constraints to be an area where
designers are finding new ways to incorporate artificial neural networks, swarm in-
telligence and machine learning. In this early design phase, there exist no starting
point which means that

Worth noting is that more articles (Camburn, He, et al. (2020); Yüksel et al. (2023);
Allison et al. (2022)) continuously brings up the concept of human bias and subjec-
tivity and how AI can assist in managing this.

4.3.1.2 Autonomous decision making

One of the major criticism drawbacks of AI and is that it can be equated with a
"black box", resulting in designers feeling scepticism and reluctance towards accept-
ing the results of an AI (Liao et al., 2020). Although the advantages of AI and
ML are evident for certain uses, the intrinsic challenge of explaining the actions
of these algorithms poses obstacles to potentially implement them, particularly in
civil aviation. Without the ability to properly clarify AI decisions or foresee ML
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outcomes, it is hard to ensure safety or guarantee system performance. While tra-
ditional software within civil aviation is deterministic as is is bounded by physics,
relying on mathematical stability, AI technologies are considered non-deterministic
(Tejasen et al., 2022). Despite this, there are still research that indicates that AI
can turn decision-making into an automated process.

An article by Verganti et al. (2020) wanted to look at what happens to innovation
and the design process, when decisions that to this day has been taken by humans,
start being taken by AI. Their conclusion is that AI is capable of revolutionizing
decision-making, by making this an autonomous process, thus driving innovation.
By surpassing the constraints of human-centric design, AI can enhance performance
in customer centricity, creativity, and speed of innovation. Verganti et al. (2020)
explain that the way to achieve autonomous decision-making is through problem
solving loops which are AI and ML algorithms/engines based on supervised and
unsupervised learning. Problem-solving loops in AI systems autonomously gather
real-time data, generating tailored solutions without human input. They improve
predictions over time, replacing human effort and scaling easily for diverse solutions
with minimal R&D investment. However, to seize the potential of AI-supported
decision-making necessitates a fundamental reevaluation of innovation strategies
within the organization by manager, according to the (Verganti et al., 2020).

In AI-driven setups, human involvement shifts, from crafting complete solutions
to identifying meaningful innovation challenges, framing innovation endeavors, and
establishing the necessary software, data infrastructure, and problem-solving mech-
anisms to address them in real-time. With AI, the purpose of the human shifts
from problem solving, to problem finding. As AI is capable of entering the creative
space, human design becomes more revolved around sense-making, and understand
what problems to focus on, thus bringing design closer to leadership (Verganti et al.,
2020). Camburn, He, et al. (2020) acknowledges that concept evaluation is difficult
and complex, with perhaps thousands of concepts to take into consideration and as
response, they propose an automated solution to design concept assessment of con-
cepts written in natural language. The method was tested empirically and works by:

1. Extracting ontological data from design concepts, utilizing machine learning.

2. Based on ontological data, quantitative metrics and filtering strategy is used
to create a creativity rating.

The proposed method by Camburn, He, et al. (2020) offers a potential approach
to objectively rate design concepts. Notably, a subset of designs automatically
chosen from a vast pool of candidates received higher scores compared to a subset
selected by humans, as evaluated by third-party raters. According to the authors,
these findings suggest the presence of bias in human design concept selection and
advocate for additional research in this area, as there still are risks with this approach
(Camburn, He, et al., 2020).
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4.3.1.3 Risk and uncertainty management

An article by Mavris and Pinon (2012) studied design challenges within aerospace
engineering. Design is an activity focused on problem-solving, where requirements
are translated into functions, resulting in decisions that shape a solution tailored
to specific needs. This process involves exploring a wide range of possibilities, ne-
cessitating the accumulation of knowledge and an understanding of the associated
constraints and trade-offs. The design process progresses through the stages of Con-
ceptual, Preliminary, and Detailed design, with each phase increasing in the level of
detail and complexity in representations and analyses. As a result, the scope and
thoroughness of the analyses and trade-offs, as well as their uncertainty and pre-
cision, differ markedly between phases. For instance, Preliminary design employs
more precise analyses and tools compared to Conceptual design. Additionally, Con-
ceptual design deals with higher uncertainty (Mavris & Pinon, 2012). Todorov et al.
(2022) confirms that deciding upon optimal concepts within the aerospace domain,
necessitates evaluating a substantial number of competing engineering solutions and
occurs in an environment of uncertainty.

According to Mavris and Pinon (2012), uncertainty seem to heavily influence con-
ceptual design in aerospace engineering. During this stage, there are many different
types of uncertainties, at several different levels. For example these uncertainties
can originate from:

• Approximations
• Simplifications
• Abstractions
• Estimates
• Lack of knowledge about the prob-

lem
• Ambiguous design requirements

• Omitted physics and unaccounted
features

• Incomplete information about the
operational environment and the
technologies available

• Unknown boundary conditions or
initial conditions

• Prediction accuracy of the models

Mavris and Pinon (2012) continue to state that uncertainty has a huge impact on
the selection of the design concept and state that in order to achieve a robust and
reliable design, uncertainties must be managed.

AI in product design is based on several types of algorithms, but case-based rea-
soning, genetic algorithms, simulated annealing, ant colony optimization, decision
tree, association rule mining, Bayesian network, and fuzzy set theory are some of
the common types (Lee, 2021). Research by J. Zhu and Deshmukh (2003) looking
specifically into Bayesian decision networks found that they are particularly useful
in decision-making influenced by high uncertainty, by providing a normative frame-
work for presenting and reasoning about problems related to decisions.

Typically, a Bayesian network structure is constructed using two types of data, ei-
ther large amounts of historical data or knowledge from experts/engineers and have
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the potential to support decision-making. It has for instance, being used in the con-
text of construction projects to identify risks, make better decisions, and minimize
the probability of failure (Pan & Zhang, 2021).

An article by G.-N. Zhu et al. (2020) looked into fuzzy logic and proposed a fuzzy
rough number-based AHP-TOPSIS for design concept evaluation in uncertain en-
vironment. Although, the article is not specifically looking into AI, the work is
still interesting as this fuzzy logic is one of the more common algorithms in AI in
general (Lee, 2021). The authors acknowledge the importance of early stages in
product development and how this process tend to be influenced by subjectivity,
lack of knowledge and uncertainty. Often times, teams need to rely on subjective
opinions from experts, that tend to be imprecise and uncertain, and they propose a
framework to handle this:

Figure 4.8: Suggested framework (G.-N. Zhu et al., 2020)

The study by G.-N. Zhu et al. (2020) shows large improvements in fuzzy rough
number-based methodology in concept evaluation and decision-making, through its
ability to deal with uncertainty and objectivity.

Risk mitigation has been found particularly beneficial in construction engineering
management according to Pan and Zhang (2021). AI can assist in risk mitigation
when uncertainty is high, by identifying risks, assessing risks and prioritizing risks to
improve safety, quality, efficiency and cost across teams and work areas. AI-driven
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risk analysis offers predictive insights on critical issues, empowering project man-
agers to swiftly prioritize risks and proactively mitigate them, rather than merely
reacting to them. AI is capable of dealing with complex problems with high un-
certainty and return tactical decision-making in this dynamic environment. Behind
these capabilities lie various AI techniques such as probabilistic models, fuzzy logic,
machine learning, neural networks, employed to analyze data from construction sites
(Pan & Zhang, 2021).

4.3.1.4 Decision support system (Human and AI collaboration)

An article by Lee (2021) reviewed studies in AI in product design, and found that
one of the main AI is incorporated into the process is through acting as a decision-
support system. A decision support system, in the context of the study, denotes
an information system facilitating design decision-making processes. They found
that, the final decision rests with the designer, while the system provides a set of
recommendations to assist in narrowing down the search space for solutions and
identifying the most optimal solution (Lee, 2021).

This relates to intelligent optimization which entails the pursuit of the most favor-
able solution, aiming to either minimize or maximize an objective function within a
defined set of constraints (Pan & Zhang, 2021). Optimization problems can either
be “single objective optimization” or “multi objective optimization”. The first is
focused on finding a single optimal solution, whereas the latter is focused on op-
timizing several functions simultaneously. In engineering practice, identifying the
most optimal solution amidst high complexity, inter-dependency, and non-linearity
can be arduous and time-consuming. Over the last few decades, meta-heuristic
optimization methods have indicated to a promising alternative to streamline this
process. Methods like these can identify near-optimal solutions that still are accept-
able and reduce the time taken (Pan & Zhang, 2021).

An article by Saadi and Yang (2023a) visualized and tested how designers and AI
can collaborate in early design process. An AI were used to generate concepts, from
which humans could select. The selection process consisted of “evaluation” and “se-
lection” and could be described in the following:

• Step 1: Visual examination based on knowledge and experience.
• Step 2: Compare performance by graphing concepts or through finite element

analysis.
• Step 3: Create prototypes of results to get a first-hand feel.
• Step 4: Iterative approach. Based on first evaluation, try new parameters and

constraints.
• Step 5: Finally, manually choosing of the final concept, based on the final AI-

generated ones. In this stage, optimized performance was not the only factor
influencing the selection, but experience and knowledge from designers influ-
enced the final decision. For example, a designer might go for a solution with
lower performance, in order to improve other factors such as manufacturability.
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Saadi and Yang (2023a) found that designers may not achieve comprehensive under-
standing of how the generative design tool generated the solutions and consequently,
a level of trust is placed in both the tool and the designers configuration of the de-
sign problem, enabling designers to accept the resulting designs.

An article by Rajagopal et al. (2022) states that there remain scenarios where hu-
man judgment remains essential, particularly when decisions hinge on factors beyond
structured data analysis. These are decisions related to things like: long term goals,
business strategy, organizational ideals, and competitive dynamics. This type of
knowledge is not available to AI, as it only exists as thoughts. As an example,
while AI could accurately pinpoint the most efficient inventory levels to maximize
revenues, in a competitive environment, a company might opt to maintain higher
inventory levels to enhance customer satisfaction, even if it means sacrificing short-
term profits (Rajagopal et al., 2022). An ideal scenario describing the merge between
AI and human decision-making can be seen in figure 4.9 below:

Figure 4.9: Proposed scenario merging AI and human activity (Rajagopal et al.,
2022)

Figure 4.9 illustrates a proposed scenario where human- and AI-supported decision-
making is combined. The solution is centered around AI supporting in generating
several possibilities for humans to choose from. Human decision-makers often opt
for choices from a limited set of possibilities based on their existing knowledge base,
prioritizing expediency over optimization. The authors argue that better decisions
are made when combining the two, rather than relying solely on one (Rajagopal
et al., 2022). This goes with what Dwivedi et al. (2021) brings up in an article,
namely that human workers play crucial roles in either evaluating and validating AI
decision recommendations, implementing the recommended actions suggested by AI,
or offering supplementary assistance in the event of errors or failures in AI-enabled
automation. Consequently, comprehending the dynamics of human-AI collaboration
is essential for realizing the expected benefits of automation (Dwivedi et al., 2021).

Other literature has commented on this phenomenon and mentioned that even
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though, experiments show that decision-makers make more correct decisions with
support from AI, human experience in combination with AI is still vital. The key
to humans making accurate decisions with the assistance of AI algorithms lies in
the combination of decision-making comprehension and experience in the people
(Janssen et al., 2022). While not looking specifically at decision-making, the results
by Song, Zurita, et al. (2020) indicate that while AI can be a powerful tool to sup-
port the design process, as of right now the best scenario is when humans and AI
collaborate together.

Companies stand a lot to gain from focusing on optimizing particularly collaboration
between AI and and develop so called fusion skills to optimize human-AI collabo-
ration, according to Wilson and Daugherty (2018). Furthermore, they claim that
companies trying to displace employees with AI, will likely experience only short-
term gains in productivity (Wilson & Daugherty, 2018). In an interview (Purdy &
Williams, 2023) with Harvard Business Review, Matt Johnson, senior scientist at
The Institute for Human & Machine Cognition had the following to say about AI
in decision-making:

“If used properly, generative AI could function as a really good team-
mate, in the same way that I might want to talk through a problem with
my colleagues even though I think I already have the solution. It also
potentially has a long organizational memory, which is useful for people
who may be relatively new to an organization and want to find out how
issues were handled previously.” – Johnsson (2023)

While this statement by Johnsson (2023) puts AI in a general decision-making con-
text it could also showcase accuracy and validity that can be expected by an AI
bot could should be equalized with an informed colleague. For example, a colleague
could potentially provide an interesting input, but by not being sufficiently into the
context they could also not be held accountable for what they say. Ultimately, the
final decision remains with the designer.

However, what seems to be the closes step towards combining the three concepts
of: Human, AI and design engineering is brought up by Demirel et al. (2024). The
authors bring up several advantages of AI to perform generative design, things such
as efficient evaluation, optimization and enabling expansive design space exploration.
However, according to the authors Demirel et al. (2024), current generative design
tools do not incorporate human factors, such as product appeal, comfort, and ease
of use into the process and thus, limiting early design process. As a response a
“Human-centered generative framework”, framed around design thinking enhanced
by AI, is proposed:
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Figure 4.10: Framework for human-centered design framework, utilizing AI
(Demirel et al., 2024)

The framework in figure 4.10 is based on a design-build-test-learn loop:

1. Design: Analog and digital process planning and modelling
2. Build: Prototyping in physical, virtual, and mixed environments
3. Test: Optimization through experimentation and simulation
4. Learn: Predicting better design solutions utilizing ML

With this approach, designers are able to capture data for example thanks to IoT,
generate concepts with AI, model variants and evaluate assumptions through multi-
physics simulation. With this solution, parameters from engineering and human
behavior can be incorporated into decision-making of early design, giving engineers
the chance to learn from variants of concepts (Demirel et al., 2024).

4.3.1.5 Knowledge support

Developments in numerical simulation and computational methodologies have en-
abled the generation, collection, and analysis of vast amounts of data, thereby en-
hancing designers’ understanding of the underlying physics of problems. Nonethe-
less, data on its own is of limited utility unless it is organized and presented in a
manner that facilitates actionable insights for designers. Additionally, proper in-
dexing, storage, and management of data are crucial to ensure its availability in
the appropriate place, at the right time, and in a suitable format for designers’ use
(Mavris & Pinon, 2012).

An article by Liao et al. (2020) wanted to investigate AI in early design and devel-
opment and different roles AI can take in this process. Related to decision-making
and evaluation, they found that:

• 1) AI can be used to draw conclusions, based on several conditions. By ex-
posing an AI to design-history-data, AI can establish correlations among past
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concepts, thereby aiding designers in deciding on potential new ideas for im-
plementation (Liao et al., 2020).

• 2) AI can play a crucial role in connecting designers with existing knowledge
and information. By assisting designers in structuring search prompts they
can uncover unexpected data, ultimately fostering the development of more
innovative design solutions (Liao et al., 2020).

• 3) AI can act as catalysts for design actions, prompting designers to reframe
their approaches. Design-problems are rarely well-defined, and solutions tend
to co-evolve with the problem itself. Therefore, designers must be able to
re-define design-problems continuously. For instance, AI may anticipate when
designers encounter obstacles and subsequently offer targeted instructions or
pose questions to assist them in overcoming these hurdles. In a broader sense,
AI could be integrated into interactive systems that gather data on design-
ers’ past and ongoing activities, recommending actions tailored to the current
design context (Liao et al., 2020).
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This chapter discusses the results from the interview study and literature review.
Each research question is addressed in its own section, covering the answers, impli-
cations for designers and the design process, our interpretations and observations,
and potential sources of error and their impact on the results.

5.1 RQ1: What are the main challenges when
performing concept generation and evaluation?

5.1.1 PD-interviews
Looking at the initial problem, catalyzing this entire study, concept development
is a complex process with many different factors to consider. After conducing this
interview study, in order to identify and document challenged related to concept
development, this initial observation was further strengthened. In addressing the
research question, ”What are the main challenges when performing concept genera-
tion and evaluation?” the outcomes of the interviews reveal a comprehensive array
of obstacles categorized into eight primary areas: data secrecy, time, organizational
synergy, information, human factor, balancing demands, conservative culture, and
the PD-process. These challenges reflect multifaceted issues that impact both the
ideation and assessment phases of concept development.

For specific and detailed answers to RQ1, go to 4.1.1 where all challenges identified
challenges are outlined. This chapter will be more focused on interpreting the result
in a more general way and comment on what this says about concept development.

One major observation from the interview study, is that there is a lot of informa-
tion within the organization and this speaks positively for GKN. However, finding
necessary information seems to be one of the biggest challenges as almost every in-
terviewee stated that information is hard to find. Lessons learned are documented
but as they are difficult to find or even locked away from employees not part of
a certain program, documenting this information in the first place can be demoti-
vating. This is not to say that lessons learned are not used, but it seems that the
preferred way for design teams to acquire new information, is by involving people
with first hand experience from previous projects. Enhancing team diversity and
implementing objective evaluation frameworks can mitigate biases, fostering more
innovative and effective concept development.
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Furthermore, due to restrictions from data secrecy, this can further inhibit the abil-
ity to efficiently share and absorb information. These restrictions create significant
hurdles in leveraging collective organizational knowledge and inhibit cross-functional
collaboration, critical for innovative concept generation and robust evaluation. Re-
flecting upon the idea of training an LLM on internal company data, can these
restrictions potentially stand in the way of successfully training a model in-house?
Furthermore, even though there is a lot of information within the organization, cer-
tain knowledge exists only in the form of experience and remains undocumented.
What does this mean when looking to train an LLM? Not only might this result in
even more restrictions when is comes to data availability, this could also potentially
introduce human bias into the training data.

As so much information is bound in the form of knowledge and experience of in-
dividuals, this can explain why human factors plays such a major role in concept
development. Due to this, the arrangement of teams seems to have a large impact
on the final outcome, as human subjectivity and bias is introduced to design work.
Furthermore, individuals have a significant responsibility to remember certain sce-
narios and information correctly. This subsequently has an affect of how different
demands are balanced, a process that seems to be influenced by high complexity
and uncertainty where many different factors need to be taken into account. Find-
ing a solution that satisfies all types of criteria seems extremely complex, as there
sometimes is an inverse relationship between certain factors. This meaning that an
increase in one variable ultimately results in a decrease in another.

The way demands are balanced is also heavily influenced by the current product de-
velopment process, where complexity and uncertainty also plays a large role. There
are many different opinions on what a good solution is and there is a challenge to
find a balance between evaluating many concepts, and also deciding on what the
best one is. As the time-factor is so significant, finding the best concept with as lit-
tle unknown risk as possible, is crucial. Time constraints pressure the development
process, often forcing premature decisions or inadequate evaluations, compromis-
ing the thorough exploration and validation of concepts. Implementing flexible and
adaptive processes, supported by integrated software solutions and proactive risk
management, can possibly enhance the efficiency and effectiveness of concept gen-
eration and evaluation.

Overall, there is a conservative culture within the organization and probably af-
fects more than just ”PD-process” and ”Human factor” as is currently indicated in
figure 4.1. Encouraging a culture that supports calculated risk-taking and open-
mindedness towards new ideas can potentially drive more dynamic and forward-
thinking concept generation.

The relationship between different challenges seen in figure 4.1 is the result of anal-
ysis and processing of the responses given by the interviewees. In order to process
the information from the interviews not only simplification had to be made but
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also interpretation of the responses. The raw data from the interview study for
PD-interviews resulted in 86 pages of transcriptions. When selecting key sentences
and phrases out of the transcribed material, and storing them in an Excel matrix,
the context is removed. While the context is important to capture nuances and the
exact meaning of a phrase, this kind simplification had to be made in order to make
sense of the information. During this process, a lot is left to our own judgement to
determine whether or not a certain sentence is relevant or not.

Trying to group and create sense out of such a vast amount of information is also
complex and also requires own interpretation to grasp such a complexity. While
some statements are easy to group as they show obvious similarities, relationships
between other might not be as clear. This ultimately implies that this kind of group-
ing is based on our selection of key statements and interpretation of the relationship
between these, and might differ if performed by someone else. To put it in another
way, this is just one way of organizing, but in fact there are numerous ways the
different challenges could be categorized. If the diagram were to be 100% true to
reality, there should probably be an arrow between every single challenge.

Furthermore, some respondents provided a lot of relevant information resulting in
us selecting many of their statements, and fewer statements from others. This could
ultimately slightly angle the outcome towards the views of a few interviewees, even
though there were many interviewees a part of the study.

Additionally, frequency of mentioned challenges was considered, but not documented
or presented in this study. This removes the ability to showcase whether a challenge
is continuously being brought up by several respondents, or if a challenge is brought
up once by a certain individual. By providing frequency, we could have been able
to more efficiently identify and communicate, not only the challenge itself, but also
where the most severe challenges are found. For example, almost every interviewee
mentioned that finding relevant information is difficult, but this cannot be deci-
phered in figure 4.1 and thus not showing the full extent of this challenge.

The answers gotten from the interviewees were certainly heavily influenced on what
they were able to come up with on the spot. There is always a risk that they might
remember situations incorrectly or not being able to come up with information at
all. This is why thorough question preparation is crucial as the answered one gets
are only as good as the questions asked. Providing the questions to the interviewees
beforehand might partially aid this possible factor.

Initially in the interview process, answers were scattered and each new interview
provided new interesting takes on concept development. However, what was inter-
esting was that after having conducted several interviews, answered was starting to
repeat and were starting to converge towards a certain direction. This indicated
that enough interviewees had been involved in the study.
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5.1.2 Decision-making interviews
Something that became apparent in the PD interviews was the conflict regarding
who or where people think decisions in the PDP are made. Therefore, it became
necessary to conduct two additional interviews with the Senior Vice President of
GKN to truly understand who makes these decisions, and more importantly, what
considerations are taken into account. It was highlighted that GKN follows a strict
decision-making process where all sub-categories of a decision are classified as either
”satisfactory” or ”more information is needed.” When all sub-categories are deemed
satisfactory, a project can move forward. In the context of our interviews, it was the
Head of Industrial Architects who was one of the key decision-makers in determining
whether a new project would proceed to manufacturing. It also became clear that
designers themselves do not make decisions on whether a concept is ready to move
forward; instead, they report their work, and then a review group evaluates the work
and decides if everything is in place or if the concept is mature enough for the next
phase in the project.

5.2 RQ2: What are the gaps that are needed to
be filled for a successful implementation of
AI/ML methods to improve robust concep-
tual design work at GKN | RQ3: What is
GKN’s current AI/ML capabilities?

5.2.1 AI/ML interviews
To successfully implement AI/ML methods and improve conceptual design work at
GKN, several key gaps must be addressed. The second round of AI/ML interviews
highlighted limitations in cultural/organizational aspects, data quality, infrastruc-
ture, knowledge/skills, technology and legal compliance/data secrecy.

A significant cultural and organizational gap exists. At the top-down level, there is
reluctance and skepticism about adopting AI/ML until its value is proven, prevent-
ing rushed strategies. Within the organization, employees’ awareness and interest
in AI/ML vary, resulting in fragmented exploration rather than a unified approach.
Resistance to moving from traditional methods to AI solutions is prevalent, and en-
gineers often lack AI/ML expertise. Quality data and clear problem understanding
are essential for AI effectiveness, but these are often missing.

Data quality is another major challenge. Issues with data management have shown
that data is not stored effectively for reuse, analysis, or training. GKN needs to
focus on data quality, governance, and literacy to ensure high-quality input data
for successful AI outcomes. Currently, much of the data is unsorted, hindering effi-
cient use of big data for automation. Robust data management practices are crucial.
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Infrastructure limitations also pose a bottleneck. Limited internet bandwidth slows
data downloading and analysis, and the high cost of moving large datasets to and
from the cloud is a concern. Current hardware is unsuitable for scaling AI/ML op-
erations. Significant upgrades and investments in IT infrastructure are necessary to
fully leverage AI capabilities.

Knowledge and skill gaps are another hurdle. While some individuals have advanced
AI skills, broader organizational understanding is limited. Many employees view AI
as a buzzword and lack practical knowledge. Expanding AI/ML knowledge through
training is essential to foster informed perspectives and effective use.

Legal compliance and data secrecy challenges are significant. Data usage restrictions,
especially for sensitive information, require in-house model training and extensive
infrastructure. Export-controlled data, particularly military data, cannot be pro-
cessed externally. Opinions vary on outsourcing model training, but anonymizing
data could allow external training without compromising security. Compliance with
legal guidelines is crucial.

Technology integration presents another gap. There is potential for using advanced
AI to generate CAD models from text or spoken inputs, transforming the design
process. However, integrating AI into established design guidelines and training AI
to align with company-specific thinking is complex. LLMs can handle subjective
design elements, but practical integration into workflows is needed.

Addressing these gaps is crucial for GKN to successfully implement AI/ML meth-
ods and improve conceptual design work. This requires improving data quality,
upgrading infrastructure, expanding AI/ML knowledge, ensuring legal compliance,
and integrating advanced AI technologies into the design process. By tackling these
issues, GKN can enhance its AI/ML capabilities and achieve more efficient and in-
novative design processes.

GKN’s current capabilities
GKN is actively utilizing AI/ML technologies across various domains, showcasing
its commitment to advancing capabilities in this field. Efforts are focused on under-
standing and integrating AI/ML into both production and enterprise processes.

Current AI/ML applications primarily consist of commercial tools such as CAD
programs, Office and GitHub Copilots, and OptiSlang, which is used for exploring
design spaces and optimizing designs using ML. AI and ML are used more in the
design process than employees might realize, given the significant leap in integrating
AI/ML applications in commercial tools used at GKN, such as NX. Furthermore,
GKN’s research projects collect images, timestamps, and other process data, in-
tegrating this with the main data logging system to boost operational efficiency.
AI/ML technologies automate production processes and implement image recogni-
tion on production lines, enhancing productivity and reducing errors. Additionally,
generative AI is being explored to improve data quality in HSE reports, demonstrat-
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ing GKN’s initiative towards new AI methods, and more importantly, LLMs.

GKN has considered using public datasets for on-premise model training to main-
tain data security while enhancing AI capabilities. Discussions are ongoing about
outsourcing model training with anonymized data to ensure confidentiality while
advancing AI/ML technologies, which is necessary since the resources for training
big models are not available on-site.

While some individuals at GKN possess advanced AI skills, broader organizational
adoption is still developing. Efforts are being made to automate data usage more ef-
fectively and reduce manual interventions. AI integration in regular processes, such
as report generation, is in the early stages, with technologies like OpenAI being
explored for broader application.

Overall, GKN demonstrates engagement with AI/ML technologies through projects
at different levels of advancement and research initiatives. Similar to the companies
that took part in the benchmarking study, GKN also shows interest in AI imple-
mentation. However, the tone from the interviews suggests that other companies
might have more capabilities for faster integration than GKN.

Their current capabilities include ML applications in design platforms, document
and code writing assistance, design optimization, and production process automa-
tion. They are proactive in addressing data privacy and security concerns through
thoughtful strategies for model training and data usage. Generally, the adoption
of AI methods is cautious and in the early stages. One of the main challenges is
the lack of broad, enterprise-wide knowledge in this area, as currently, only certain
individuals possess advanced expertise, leaving the majority of employees behind.
This makes a large-scale adoption of, for example, fine-tuned LLMs unlikely in the
near term.

Drawbacks of the AI/ML interviews
After the AI/ML interviews were conducted and additional literature was reviewed,
we concluded that having more background knowledge in the AI/ML area prior to
the interviews would have enabled us to ask more specific questions. However, since
the interviews were semi-structured, we still gathered much useful information. We
view this as a minor flaw within the broader context of the study.

Given that the focus of this thesis is to identify AI/ML methods and tools that can
aid the early stages of concept development, the number of AI/ML interviews con-
ducted may have been insufficient. In retrospect, it would have been more logical
to conduct an equal number of PD and AI/ML interviews. As these two groups
combined totaled 16 interviews, having eight PD interviews and eight AI/ML in-
terviews would have been preferable. One reason for this is the greater variability
in responses from the AI/ML interviews compared to the PD interviews. While
the responses from the 11 PD interviews were quite similar, the AI/ML interviews
varied significantly from one another. We conclude that having more AI/ML inter-
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views would have enhanced the quality of this thesis. We do not believe that the
knowledge existing at GKN is adequately represented by only these five interviews.
However, since one of the directors participated in the study, we were able to gain
insight into their plans, intentions, and attitude towards AI/ML implementation,
which is a crucial aspect of the study.

Only in one of the interviews did a respondent possess knowledge of both the design
process and AI/ML methods, and how these could be beneficial. In contrast, many
others primarily focused on AI/ML applications that lie outside of the design pro-
cess. By increasing the number of AI/ML interviews, there was a potential to gather
more useful information in this specific area, which is the primary topic of this thesis.

Generally, the interview study became too extensive, reducing time spent on liter-
ature study which may have affected the results. The scope of the study was to
wide, resulting in a less thorough investigation of each specific aspect. We would
recommend a more directed study next round, focusing on a very specific issue in
the concept development at GKN, not the whole process at once.

5.3 Benchmarking interviews
The purpose of the benchmarking study was mainly divided into three parts: 1) Gain
access to current state of the art of AI implementation in industry, and compare
this to where GKN currently stands, 2) Take part of other organizations motiva-
tions for implementing AI, 3) Take part of lessons learned from companies being
successful/unsuccessful implementing AI.

The three studied organizations were one GKN Fokker, SKF and C3 being a large
life science company in a regulated industry. Even though, none of the organizations
is directly comparable to GKN, all organizations worked with product development
where product safety, customer safety and information safety were a very high pri-
ority.

On one hand for the purpose of this study, an interesting observation was that neither
GKN Fokker, SKF use AI support for concept generation and evaluation, hinting
that this type of process still is influenced by manual work in large organizations
as of right now. On the other hand, C3 gave indications that concept generation
and evaluation was influenced by AI applications, but unfortunately this is where
that discussion ended. This might suggest that this type of technology is still so
new and rare that it is strategically beneficial to keep this information withing the
organization. However, this is nothing we could confirm and thus making it difficult
to benchmark concept development against C3.

The interview with R20 at SKF was particularly interesting because he did not only
have large insight into AI implementation at SKF, but also into several other large
engineering organizations and thus was able to make comparisons. He found that
SKF is at the forefront of AI implementation, for one main reason: having manage-
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rial support and push to make sure that the organization realize that AI is important.
However, this benchmarking study was still limited to the firsthand information from
just three organizations, and just gives a glimpse into AI-implementation in industry
as a whole.

In general, the findings suggest that it’s clear that the three organizations stud-
ied in this benchmarking study, still are in the early phase of AI-implementation.
It is mostly done in small scale, for specific applications and still very much done
as trial and error, but early improvements can already be seen in specific areas.
Furthermore, companies are still in the experimental phase and continuously dis-
covering new areas where AI can be implemented. Even though each company have
face their own specific challenges and do their own take on AI implementation, the
overall goal seem to be quite consistent: increase productivity, be more efficient and
make optimization easier. What is clear is that all three organizations are well aware
of the echoes of AI and are looking into how they are able to introduce AI to suit
their particular needs.

5.4 RQ4: How can tools from AI and ML can be
used to simplify concept generation, evalua-
tion and to propose a robust design solution?

This section aims to discuss the answers of RQ4.

5.4.1 Implications of the result and how it relates to litera-
ture, and interviews

This section aims to adress the implications of the result and how it relates to the
literature found.

5.4.1.1 LLMs in Concept Generation

LLMs, such as GPT-4, could revolutionize the engineering field by simplifying con-
cept generation, evaluation, and the development of robust design solutions. Tradi-
tionally, engineering design has relied heavily on human expertise, involving iterative
dialogues filled with calculations and simulations. However, the integration of LLMs
and other digital tools is streamlining these interactions, automating complex pro-
cesses, and enhancing the reasoning and argumentative processes that are intrinsic
to design (Göpfert et al., 2023).

LLMs and multi-modal models are adept at processing a wide range of data types,
including natural language, text, tables, sketches, and 3D models. This capability
makes them exceptionally good at integrating into the goal-driven dialogues essen-
tial to design. Through their extensive training on diverse datasets, these models
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perform complex reasoning tasks and support decision-making processes, transform-
ing how concepts are generated and evaluated (Song, Zhou, & Ahmed, 2023; J. Wei
et al., 2023).

LLMs are at the forefront of advancements in NLP as stated, and have expanded
their utility to support creative reasoning tasks that are crucial in engineering, par-
ticularly when integrated with computational techniques like topology optimization
(Göpfert et al., 2023; A. Wang et al., 2019). Furthermore, AI technologies such as
GANs and reinforcement learning systems demonstrate the substantial role AI plays
in enhancing design strategies and promoting a deeper understanding of the design
process through advanced learning mechanisms (Gyory et al., 2021, 2022; Raina
et al., 2021; Regenwetter et al., 2022).

The versatility of LLMs extends to their ability to process and organize vast amounts
of design documentation and decompose complex design tasks into more manage-
able, functional formats. This capability facilitates broader and more effective
ideation across various aspects of engineering projects (Qiu & Jin, 2023; B. Wang
et al., 2023). Furthermore, LLMs demonstrate remarkable utility in extracting and
integrating user needs from product reviews, allowing for a user-centered approach
in design that leverages user-generated content effectively (Han et al., 2023).

LLMs also found a role in fields like microfluidics and robotics, where they assist
in both ideation and problem-solving. This reflects the adaptable and extensive
applications of LLMs across different engineering disciplines (A. Li et al., 2023; Nel-
son et al., 2023; Stella et al., 2023). Their integration into design heuristics is not
only innovative but potentially transformative, offering new paradigms for address-
ing modern engineering challenges and enhancing the innovation process (Yilmaz
et al., 2016). The abilities of LLMs extend to generating design concepts, analyzing
sketches, selecting materials, and creating CAD drawings, highlighting their poten-
tial to fundamentally transform engineering design (Makatura et al., 2023; Picard
et al., 2023; Q. Zhu & Luo, 2023).

The general idea synthesized from the literature is that LLMs act as assistants at
every stage, helping designers become more efficient in their work. They spend less
time on tasks that do not contribute to the robustness of the concept or the prod-
uct itself. By providing designers with information quickly, aiding in ideation and
creative reasoning, assisting in topology optimization, structuring documents, and
even generating simple emails, LLMs allow designers to focus on tasks that require
human expertise and evaluation—those intrinsic to the concept generation and de-
sign process.

All these factors combined suggest several ways that LLMs can help simplify and
streamline design processes, offloading tedious tasks from designers. This increases
their cognitive capacity as they can focus on fewer areas, leading to higher concen-
tration and productivity. This human-computer interaction would logically result
in more knowledgeable human designers, who are more capable of generating robust
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concept solutions.

LLMs in archivable design dialogues: The potential to digitize design dia-
logues into a manageable, archivable format adds another layer of efficiency. By
documenting and archiving every step of the design process, including the reasoning
and decision-making phases, past designs can be revisited and utilized efficiently for
new product developments, ensuring that design decisions are traceable and that
the collective reasoning process is enhanced, fostering better collaboration and in-
novation (Göpfert et al., 2023).

The idea of using traceable past decisions and archiving design dialogues to think
like a GKN designer also holds great potential. However, it’s important to consider
that humans have biases toward different solutions based on their training, academic
background, and previous work experience. Training an LLM on designer-specific
data and decisions could incorporate these biases. This can be both beneficial and
detrimental, as GKN must sometimes prioritize certain biases due to external stake-
holder pressures, such as demands for reduced weight that might increase costs.

Another aspect to consider is the selection of design dialogues. Should all dialogues
be included, even those involving less experienced designers, or should the focus be
on those between experienced designers? This could be a concern, but testing on
a variety of results would include the most diverse selection of biases, which could
make decisions and workflows more objective.

LLMs in aerospace applications: An example of LLMs in action can be observed
in a study at the German Aerospace Center (DLR), where an AI-powered chatbot
serves as the core of an intelligent workflow engine integrated within the GTlab soft-
ware framework (Reitenbach et al., 2024). The study’s positive results demonstrate
the potential of incorporating LLMs in high-complexity situations, particularly in
aerospace applications. For GKN, this serves as a proof of concept, highlighting
that the implementation of LLMs in an aerospace workflow can be successful. The
system’s ability to perform detailed thermodynamic calculations, such as predict-
ing compressor outlet conditions from given parameters, showcases its potential to
streamline technical workflows and enhance usability in critical engineering applica-
tions.

For designers wanting to quickly adjust a part by increasing or decreasing a parame-
ter, this could be very beneficial. The workflow engine could provide instant feedback
to queries without requiring the designer to wait for analysis team feedback. This
does not eliminate the need for analysis teams, instead, it offers immediate feedback
on ideas that can later be implemented with fully performed and verified calcula-
tions.

Generative design tools: which are integrated with AI, are redefining traditional
tasks within the engineering sector. These tools enhance the efficiency and creativity
of design processes by fundamentally altering how designers interact with both the
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conceptual and optimization phases of projects (Kazi et al., 2017; Krish, 2011; Saadi
& Yang, 2023b; Zhang et al., 2021). While these innovative approaches often require
designers to rethink their strategies for setting up design spaces and aligning with
design briefs, the benefits include more dynamic and responsive design outcomes
(Alcaide-Marzal et al., 2020; Lopez et al., 2018; Vlah et al., 2020). The digitization
of engineering design has also advanced significantly, supported by modern tools
that enhance every stage of the PDP through improved visualization and interac-
tion capabilities (Göpfert et al., 2023). In particular, generative AI design tools has
revolutionized the design of 3D structures, making the mechanical design process
more versatile (Jadhav & Farimani, 2024; C. Li et al., 2022; Nichol et al., 2022;
Sanghi et al., 2022). Furthermore, generative AI design tools help designers quickly
determine if a simple idea could work or not. The instant feedback, combined with
human intuition, allows for easy identification of unworkable ideas. Additionally,
commercial generative design tools are rapidly integrating new techniques into their
software. These tools could further assist designers in the future, streamlining much
of the design process. This means GKN might not need to implement their own AI
solutions in workflows but could instead purchase commercial products that offer
the same capabilities.

The adaptability of these models to different query structures and technical termi-
nologies is crucial, especially in applications like aircraft engine simulations, under-
lining the profound impact LLMs have in simplifying concept generation, enhanc-
ing evaluation processes, and proposing robust design solutions in engineering and
aerospace applications.

5.4.1.2 Robust design and Zero Defects with AI

(Leberruyer et al., 2023) highlights several different topics of integration of AI into
the ZD subject. AI in general can be used for data-driven techniques for auto-
mated data analysis and decision making, such as Failure Mode and Effects Analysis
(FMEA) and in detail (Process-FMEA). Approach for identifying possible failures
in a design, a manufacturing or assembly process, or a product or service.

Robust design: Throughout increased reasoning, creativity, and idea generation,
there is a potential to predicting and generating more attractive attributes that sat-
isfies or surpasses expectations. Predicting delighters is particularly challenging as
they often arise from unspoken needs or latent desires. In terms of robust design,
delighters could be an optimized solution generating a new unseen concept. We
argue that, following the Set-Based way of PD, that a increased knowledge space
would also increase the design space, and in extension help propose a robust design
solution.

AI/ML can facilitate SBD by quickly generating a wide range of design options
based on predefined constraints and objectives. Machine learning algorithms can
evaluate these options against multiple criteria, allowing designers to eliminate in-
feasible or suboptimal solutions early in the process. This enhances the efficiency of
the concept development phase by focusing resources on the most promising design
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paths.

Design for Manufacturing ensures that a product is easy and cost-effective to pro-
duce. AI/ML can enhance DfM by analyzing manufacturing constraints and capa-
bilities early in the design process. Predictive models can evaluate the manufac-
turability of design alternatives, identify potential production issues, and suggest
design adjustments to simplify the manufacturing process. This integration reduces
the likelihood of defects and rework, contributing to zero-defect manufacturing goals.

Failure Modes and Effects Analysis (FMEA) and its more detailed variant Failure
Mode, Effects and Criticality Analysis (FMECA) is a systematic method for identi-
fying potential failure modes and their effects on the system. AI/ML can automate
and enhance FMEA by analyzing large datasets to predict possible failure modes
and their impacts. NLP can process historical maintenance logs, incident reports,
and other textual data to uncover patterns of failure. Machine learning algorithms
can then prioritize these failure modes based on their severity, occurrence, and detect
ability, providing valuable insights for mitigating risks early in the design process.

5.4.1.3 Concept evaluation

When studying how AI can assist in concept evaluation and decision-making, AI
capabilities found were found to be ”Human bias mitigation”, ”Automated decision-
making”, ”Risk and uncertainty management”, ”Decision support system” and ”Knowl-
edge support”

Based on the studied literature, it’s clear that human bias and subjectivity plays a
large role in product development, and particularly when it comes to early concept
evaluation, where several articles state that AI can support in managing this bias.
Based on the amount and frequency of this stated phenomenon, human bias and
subjectivity mitigation seems to be the main advantage and capability of incorpo-
rating AI in decision-making and evaluation.

There are a lot of similarities between a System 1 type of thinking, influenced by
habit and intuition Kahneman (2011) and decision-making based on subjective and
biased elements found in early concept development. Kahneman (2011) state that
for important decisions, basing decisions the System 1 way is not recommended.
This might suggest that AI has the capability to turn the current way of evaluating
concepts, from a system 1 type of decision-making, into system 2 type of decision-
making:
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Figure 5.1: Visualization of how AI can trigger System 2 type of decision-making,
resulting in objective concept evaluation

Figure 5.1 illustrates a proposed scenario in how AI can come to play a role in design
work, paving the way for more proper decision-making.

An interesting take on AI and decision-making is that by Verganti et al. (2020)
stating, as decision-making becomes an automated process, the purpose of the en-
gineer shifts from problem solving, to problem finding. This, connected to what
was stated by Saadi and Yang (2023a), where they claim that designers might not
achieve the same understanding of how a generative design tool generates concepts.
Even though AI can be considered a ”black box” (Liao et al., 2020), there is also a
level of new trust placed on the designer in structuring the problem properly (Saadi
& Yang, 2023a). Consequently, design-engineering will become a lot more about
giving proper instructions to and AI accepting or not accepting what it produces.

The literature study has indicated that this type of iterative work between human an
AI in decision-making is what the solution is, even though a few articles (Verganti et
al., 2020)(Camburn, He, et al., 2020) have stated that AI can turn decision-making
into an automated process. The majority of studies of AI evaluation in design work
has been indicating that human-AI collaboration is going to be the most favourable.
Lee (2021) found that the role of AI in decision-making is in acting as a ”decision
support system” where the final design decision ultimately rests with the engineer,
but AI assisting in narrowing down the search space. Saadi and Yang (2023a) illus-
trated a 5 step approach to incorporating human and AI capabilities, combining the
strengths of AI and humans. Demirel et al. (2024) illustrated that human factors
doesn’t have to be negative in design work, but that factors like these risk being re-
moved when performing generative design, and thus another framework is proposed.

There are still areas where human expertise is essential (Rajagopal et al., 2022), but
also areas influenced by high complexity and uncertainty where AI can support as
human capabilities are restricted (Lee, 2021). The idea is not necessary to remove
human factors, but to aid human restrictions and assist where human capabilities are
insufficient. Based on the studied literature, the following framework is proposed:
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Figure 5.2: Visualization of how AI could support concept evaluation

The figure 5.2 is meant to illustrate, that even though some have found that AI
actually make better decisions, it is not perfect, and therefore, humans still need to
be in the process. Consequently, AI should be given the role of a decision co-pilot,
where human an AI work together.

Lastly, AI appears to be able to support designers with knowledge (Liao et al.,
2020). By utilizing data from past design-decisions, an AI is capable of creating
recommendations in the current work process. It can also help designers find out
about knowledge that otherwise might have been overlooked. By letting decision-
makers have access to more easily accessible information, one could argue that this
consequently will lead to more informed decision. Taking this a step further, per-
haps the reason for the fact that human bias and subjectivity plays such a large role
in concept evaluation, is the fact that information is hard to find, which makes it
natural to use experience instead of more objective information.

Several articles states that AI can assist in decision-making and concept evaluation,
yet few propose clear software and techniques that can be implemented (Khaleel
et al., 2023)(Yüksel et al., 2023)(Allison et al., 2022). The ones that have proved
that AI can improve decision-making, have used it in still relatively simple sce-
narios. There have been scenarios of evaluating concepts existing in natural text
(Camburn, He, et al., 2020) and concept evaluation of footwear (Yuan et al., 2022).
Furthermore, the literature studied have been looking at design process in general
or at specific examples. However, non of the articles looks into concept evaluation
in aerospace engineering. Articles, stating that AI can’t be used for decision-making
has not been found.
To summarize, there are four main capabilites of AI in design concept evaluation:
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Figure 5.3: Visualization how the four capabilites exist in the contect of Human-
AI collaboration

These four capabilities identified in the literature study are not to be seen as individ-
ual islands, but all work together, in an overall context of ”Human-AI collaboration”,
as this will be most beneficial. For example, automated decision-making is possible
but as it is not perfect, is still needs human support, by iteratively coming up with
solutions. However, this is based on the literature found, based on searching with
relevant keywords. Worth noting is that few articles published on the subject were
newer than 2022 and as this is a fast moving discipline, a lot can change. It would
have been beneficial to have found studies from 2022-2024 but unfortunately, no
relevant literature published during these years were found.

5.4.2 What affected the results
This section aims to adress the sources of error that could have had an effect on the
outcome of the study.

5.4.2.1 LLMs in Concept Generation

There is a lot of literature about AI/ML in the topic of design. CAD, MDO, DSE,
workflow enhancements, patent identification with AI/ML support, and so forth.
However, the area of AI/ML in aerospace is more limited, especially in the context
of LLMs. Additionally, a lot of articles bring up opportunities of the technology,
but very few actually describe a process of integration, or whats being used today
in practice, and if that is the case, how it is actually used. The conception we
get is that there is a lot of will to incorporate AI/ML into design processes and
corporations, however the actual integration has not happened yet on an enterprise
wide scale according to the literature study. This is a contradicting fact, since the
benchmarking study has shown something different. Furthermore it is interesting
how articles from just 3 years ago depicts a different AI environment as of now. It
has been important to keep in mind the different release dates of commercial and
open-to-use AI platforms such as OpenAI and their release of different versions,
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because GPT-3 tests are almost obsolete compare to GPT-4 tests after the huge
improvement in handling complex tasks after that update. Therefore, it must be
said that, while those articles have important insights, that the testing and results
cannot be taken into a count from articles published before March 14, 2023.
When currently writing the discussion part May 13 2024, OpenAI have released
their newest version GPT-4o. GPT-4o have a lot of the multi-modal capabilities
that been discussed in previous works. It has the capability to take in a live video
feed from you camera, and have the ability to speak to you in real time, enabling
speech-to-speech prompts. Meaning that it can reason across, audio, vision, and
text in real-time. Again showing the rapid advancements in the field of AI and
LLMs in particular.

5.5 RQ5: What AI based methods have a poten-
tial to improve robust conceptual design work
at GKN and what are their limitations?

This section discusses how the results from the study answers RQ5 and then sources
of error that may have affected the results.

5.5.1 Implications of the result and how it relates to RQ1,
RQ2, RQ3

This question will be partially answered by the PD-process, AI/ML and Bench-
mark interviews, utilizing all respondents from Table 3.1, 3.2, 3.3, 3.4 as well as the
literature study, combining information from both to gain a holistic and accurate
view. Summaries providing an overarching perspective will be presented from the
interviews, along with key citations. The text is structured based on the challenges
identified in RQ1 results.

Based on the literature study on concept evaluation and decision-making, no stud-
ies were found where a with a clear suggestion of how concept evaluation could be
incorporated at an organization like GKN. Several studies were optimistic towards
AI in concept evaluation and decision-making and most studies stated that concept
evaluation and decision-making were applications of AI. However, few actually pro-
vided frameworks and the ones that provided a tangible method for AI supported
concept evaluation, still used it with simple concepts like sneaker design and con-
cepts purely existing in text. No studies were found, where concept evaluation was
proved to be performed successfully, in an industrial manufacturer like GKN.

However, taking more of a theoretical approach on how AI could support in concept
evaluation and decision-making, there are still areas where AI could support in
theory, even though there is a lack of a tangible framework ready to implementation.
The literature still provided capabilities of AI, even though AI might not be ready
to handle the complexity of products developed at GKN. With this in mind, the four
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capabilities found and illustrated in figure 5.3, are to be used and matched towards
challenges outlined in 4.1.1.

5.5.2 Product Development Process
The integration of AI and ML methods in the product development process (PDP)
offers significant potential to address the specific challenges identified at GKN. Be-
low, I discuss how the technologies mentioned in the provided text can help tackle
each challenge.

CP1: Managing Ambiguity and Diverse Perspectives
LLMs such as GPT-4 can play a pivotal role in managing ambiguity and synthesiz-
ing diverse perspectives during the early phases of development. Their capacity to
process and generate natural language enables them to integrate and reason about
diverse inputs and feedback from different stakeholders. As Göpfert et al. (2023)
suggest, LLMs facilitate goal-driven dialogues that are essential in balancing design
freedom with timely decision-making. These models can generate multiple design
scenarios and solutions, providing a structured way to explore various design options
and implications before finalizing decisions (Göpfert et al., 2023).
Furthermore, AutoTRIZ, an LLM-based tool, enhances creative problem-solving by
systematically generating innovative solutions while considering diverse engineering
principles and patent data. This tool reduces cognitive load and speeds up the
decision-making process by automating the generation of detailed solution reports
based on user inputs (S. Jiang & Luo, 2024).

CP2: Navigating Theoretical vs. Practical Discrepancies
GANs and reinforcement learning systems can help bridge the gap between theo-
retical models and practical realities. These AI techniques can simulate and eval-
uate numerous design iterations rapidly, learning from each iteration to converge
on solutions that not only meet theoretical standards but also adhere to practical
constraints (Regenwetter et al., 2022).

For instance, GANs could be used for the ideation and brainstorming of 3D mod-
els of new products under different manufacturing conditions, identifying potential
issues before physical prototyping. This helps in understanding how theoretical de-
signs might perform under real-world manufacturing conditions, thereby mitigating
the risk of mistakes and ensuring that the designs are both innovative and manu-
facturable.

CP4: Complexity and Risk Management
The digitization of design dialogues and archiving of design processes, as enabled by
LLMs, contribute significantly to complexity and risk management in project execu-
tion. By maintaining detailed records of the decision-making process, AI tools help
in tracking the evolution of designs and understanding the rationale behind certain
decisions (Göpfert et al., 2023). This documentation is crucial for anticipating and
addressing potential deviations during manufacturing.
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Moreover, the application of deep learning in the design of 3D structures allows for
more versatile and accurate simulations of how designs will behave under various
stressors and manufacturing processes (Jadhav & Farimani, 2024). These simula-
tions help in identifying potential risks and complexities early in the design phase,
thus allowing for adjustments before costly manufacturing commitments are made.

In terms of concept evaluation the product development process at GKN is
characterized by high complexity, risk and ambiguity. Early stages are marked by
uncertainty, requiring a balance between creative freedom and planning. Teams
must evaluate all concepts while aligning with top management’s decisions. Navi-
gating dynamic processes can lead to skipped steps when processes feel cumbersome.

CP1 highlights that there is a challenge with ambiguity and decision-making in
concept development. This relates to exploring as many ideas as possible while also
coming to a decision and what idea to go forward with. This challenge relates to
many of the other challenges [CH2][CB1] as it is brought forward that coming up
with a final solutions is difficult. There are also several perspectives to what a good
solution is and thus this makes it even more complex. However, it could be argued
that there shouldn’t be opinion on what a good solution is. In an ideal scenario,
it should be possible to state that one solution is objectively the best. With AI,
this has the potential to become reality. By deploying AI-human collaboration, AI
can assist in providing automated decisions and iteratively develop solutions with
human expertise and experience. AI can aid in decision-making and evaluation at
GKN, making this process more objective.

CP4 highlights that there is a challenged related to anticipating risk in project
management. AI can assist in risk identify, assess, and prioritize risks. As it was
stated in [CC2], the problem is not necessarily the risk itself, but not knowing
that the risks exist in the first place. AI can potentially assist in this scenario, by
providing better identifying risk, providing designers better understanding of the
risks and consequently, enabling more tactical decision-making.

5.5.3 Balancing demands
The balancing of demands ultimately comes down to making a decision. While it’s
possible to continually refine aero-calculations to achieve better results, there comes
a point where a trade-off must be made to move the project forward. In this context,
AI can serve as a valuable tool in concept evaluation.

Similarly, LLMs can facilitate ideation in concept generation. Often, design pro-
cesses can become stagnant if certain areas remain unexplored. With the assistance
of LLMs, the balancing of demands can be streamlined in two significant ways:
firstly, by suggesting solutions to seemingly impossible challenges, and secondly, by
aiding in the decision-making process to prioritize performance in one area over an-
other.
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CB1: Balancing Ideation and Refinement During Design Exploration:
The challenge of balancing ideation and refinement in design exploration is critical,
as it requires ensuring a thorough evaluation of potential solutions while maintain-
ing creative exploration. Generative design tools integrated with AI, such as those
utilizing GANs and deep learning, are especially well-suited for this task.

Generative Design Tools: These tools employ algorithms to generate multiple
design alternatives from initial specifications, which can then be refined and op-
timized through iterative processes. This not only accelerates the ideation phase
by producing diverse solutions but also enhances the refinement phase by allowing
rapid prototyping and evaluation of these solutions (Saadi & Yang, 2023b; Zhang
et al., 2021). For instance, systems like ClipForge and PointE leverage deep learning
to create and modify complex 3D models, enabling engineers to visualize and iterate
on design solutions more effectively (Nichol et al., 2022; Sanghi et al., 2022).

LLMs can streamline the refinement process by generating detailed evaluations of
designs based on vast amounts of training data, including design specifications, per-
formance criteria, and compliance requirements (Göpfert et al., 2023). These models
can simulate expert reasoning, offering insights that typically require significant hu-
man expertise, thus ensuring that each design iteration is thoroughly evaluated.

In term of concept evaluation, human factors such as subjectivity and bias ul-
timately play a role in how demands are balanced and coming up with objectively
the best balance is complex as there are numerous factors to consider. Uncertainty
also plays a large role here as is it might be difficult to say that balancing factors
one way, is better than a similar way.

CB1 highlights that there is a challenge centered navigating trade-offs in design
exploration. When there are so many factors to balance and consider, deciding on
a solution can be complex. As it is difficult to identify a solution that objectively
the best, designers might be forced to introduce human bias and subjectivity in
order to create some kind of logic in this complexity. With AI-human collaboration,
solutions can iteratively be developed, where an AI generates concepts, optimizes,
and decides on the best ones according to certain criteria. Finding the concept with
best performance might therefore be simplified, removing the number of factors, and
ultimately assisting in balancing demands.

5.5.4 Human factor
CH1: Dependence on Team Composition for Innovative Conceptual Think-
ing
The dependence on specific team members for innovation poses a significant chal-
lenge, as it can lead to inconsistencies in creative output if key individuals are
unavailable. Here, LLMs and multi-modal models can play a transformative role.
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Decentralizing Creativity with LLMs: LLMs democratize the access to innova-
tive problem-solving capabilities by providing all team members with tools that sim-
ulate expert thinking and creativity. For example, AutoTRIZ, an LLM-based tool,
applies TRIZ methodologies to automate and enhance creative problem-solving,
making innovative thinking accessible to every team member, regardless of their
inherent creativity or experience (S. Jiang & Luo, 2024). This approach not only
supports individual ideation but also enhances collaborative innovation, ensuring
that the design process is not bottlenecked by individual creativity limitations.

Multi-modal Models for Enhanced Collaboration: Multi-modal AI models
that process and integrate different data types—text, images, sketches—allow for
a more inclusive and comprehensive understanding of design tasks (Driess et al.,
2023; Gan et al., 2022). These models enable teams to contribute various forms of
input, fostering a collaborative environment where different perspectives are synthe-
sized. This capability is particularly beneficial in addressing complex engineering
challenges where diverse viewpoints can lead to more innovative solutions.

Based on the answers provided by (Reitenbach et al., 2024), it is evident that inte-
grating an AI-assisted chatbot could greatly enhance design processes in the initial
stages. The early stages of design involve substantial amount of ”napkin-math,”
and the implementation of a query-based workflow where specific tasks can be re-
quested shows significant potential to reduce time. Additionally, as LLMs become
more multi-modal, incorporating a speech-to-text application could further decrease
the time required. For example, you could ask the WfMS questions like, ”Given the
diameter of this fan, provide me with the outlet temperature,” to receive immediate
feedback during meetings or when brainstorming ideas at the design desk.

In term of concept evaluation, removing human bias and subjectivity is one
major capability and benefit of AI in concept evaluation, based on the literature
study. For the case of GKN, human factors seem to play a large role when decision
are made in the product development process.

CH1 highlights that creating teams can be a challenge as conceptual innovation
is dependent on successfully creating teams with members with different qualities
and reference frames. This indicates that human factors are important in order to
evaluate concept successfully, and that they play a large role at GKN. With AI and
human collaboration, teams are able to emphasize the strengths of human factors,
while removing human restrictions, ultimately supporting concept development.

CH2 highlights that there is a challenge in achieving objectivity when performing
concept scoring as subjective elements tend to influence the process which can result
in selecting concepts that are not objectively the best. This is an area can AI can
assist by coming up with performance optimized concepts that are objectively the
best. However, there might be other factors than performance that is of interest and
thus human factors can be added by choosing a concept with lower performance,
but that is going to be easier to manufacture, for example.
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5.5.5 Time management
CT1: Extensive time required for material strength and aero-performance
analysis:

The challenge of reducing the time required for material strength and aero-performance
analysis can be addressed effectively through the integration of Deep Learning and
Simulation AI technologies.

Deep Learning Models: These models can predict material properties and aerody-
namic performance based on vast datasets derived from previous experiments and
simulations. For instance, models like those used in ClipForge can be adapted to pre-
dict material behavior under different stress conditions and environmental factors,
potentially reducing the need for extensive physical testing (Jadhav & Farimani,
2024; Nichol et al., 2022).

GANs can be used to generate synthetic data for training models when actual test
data are scarce. This approach can accelerate the development of predictive models
for material strength and aerodynamics, ensuring faster and more accurate perfor-
mance evaluations (Regenwetter et al., 2022).

5.5.6 Organizational synergy
CO1: Inefficient development processes for new technologies due to a
lack of coordination across different disciplines:
Addressing inefficiencies in development processes due to poor coordination across
different disciplines can be significantly improved by employing LLMs and collabo-
rative AI systems. AI/LLMs address areas where 1) technology development is not
common at all and 2) the disciplinary breadth itself is rarely well-suited for a more
narrowly focused technology development process.

LLMs can serve as integration tools that facilitate communication and data sharing
across disciplines. By processing natural language, technical reports, and design
documents, LLMs can provide summaries, align objectives, and highlight interde-
pendencies among various disciplines, enhancing coordination (Göpfert et al., 2023;
Schick et al., 2023).

Collaborative AI systems can be configured to manage workflows and integrate in-
puts from various engineering disciplines into a cohesive development process. Tools
like the AI-powered workflow engine in the German Aerospace Center’s GTlab can
automate the synthesis of inputs from different teams, ensuring that the develop-
ment process is streamlined and more efficient (Reitenbach et al., 2024).

CO2: Recurring design challenges with the nozzle that persist through
multiple iterations, resisting improvement:
For recurring design challenges, such as those with the nozzle, AI can provide deep
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insights and innovative solutions to improve design iterations.

AutoTRIZ can be particularly useful in addressing complex recurring problems by
applying TRIZ methodologies, which focus on inventive problem-solving strategies.
By combining this with computational fluid dynamics (CFD) simulations, engineers
can explore a broader range of potential improvements that are data-driven and
innovative (S. Jiang & Luo, 2024).

Multi-modal AI Models which integrate data from sketches, CAD models, and sim-
ulations, can help in visualizing and analyzing different designs to identify potential
flaws early in the design process. By iterating through designs rapidly with AI
support, persistent issues can be resolved more efficiently (Driess et al., 2023; Gan
et al., 2022).

5.5.7 Information
Information, such as internal documents and knowledge plays a vital role at GKN,
as information lays a foundation in how demands are balanced. GKN faces several
challenges, including the integration of knowledge and skills, where much informa-
tion is retained as personal experience, making it hard to find documented lessons
and leading to significant time spent on searching. Managing customer expectations
and adapting to evolving requirements in product development is another issue, as
is maintaining knowledge of past projects and new technologies due to infrequent
development cycles.

CI1 highlights that finding necessary information and lessons learned from previous
projects is difficult. AI can assist with knowledge support, by providing designers
with lessons learned from previous projects, based on design-history-data, making
correlations to current work. If GKN can create commonly accessible sets of data
that can be shared in between internal projects or programs, there is a good op-
portunity to use various AI techniques to develop support for an AI to connect
designers with existing knowledge and information. If designers at GKN, has the
potential to access more documented information, perhaps the might not have to
rely on subjective elements in their work, ultimately leading to more objective con-
cept development.

To summarize, The literature review on concept evaluation and decision-making
revealed a lack of clear guidance on how to incorporate these processes into an or-
ganization like GKN. While many studies are optimistic about the potential of AI
in concept evaluation, few provide tangible frameworks applicable to complex in-
dustrial contexts. Most AI applications reviewed are limited to simple design tasks,
such as sneaker design, and do not address the intricacies of industrial manufactur-
ing.

Despite the absence of ready-to-implement frameworks, AI’s theoretical potential to
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support concept evaluation and decision-making remains significant. The identified
capabilities of AI, as illustrated, can be matched to the challenges outlined in the
product development process at GKN. AI methods, including LLMs and GANs, can
enhance creative reasoning, manage ambiguity, and bridge the gap between theo-
retical models and practical realities. These tools also aid in complexity and risk
management, ensuring thorough documentation and simulations that predict real-
world performance.

In conclusion, AI-human collaboration offers promising avenues for improving con-
cept evaluation at GKN. AI can provide objective assessments, assist in risk iden-
tification, and enhance decision-making, thereby reducing human bias and subjec-
tivity. However, successful implementation will require careful integration of AI
capabilities with human expertise to navigate the complexities of industrial product
development.

5.5.8 Limitations of methods in aerospace applications
In the context of aerospace design processes, the limitations of LLMs pose signif-
icant challenges that can impact their effectiveness and reliability. The nuanced
exploration of these limitations can help in understanding the potential risks and
constraints associated with deploying LLMs in highly technical and safety-critical
environments like aerospace companies. Here’s a detailed discussion based on the
limitations identified:

Interpretability Issues
The interpretability of LLM-generated concepts is a major concern in aerospace de-
sign, where each component and system must meet stringent standards for safety
and functionality. The lack of reliable metrics to validate the quality and viabil-
ity of generated concepts means that LLM outputs must be closely scrutinized by
human experts, potentially negating the efficiency gains expected from using AI in
the design process (Q. Zhu & Luo, 2023). The development of robust evaluation
metrics is critical to integrating LLMs into aerospace design workflows effectively.
Furthermore, the non-deterministic (non repetitive) nature of AI is in contrast to
what the aerospace industry normally look for.

Generalizability and Extendibility
LLMs face challenges in generalizing across the diverse tasks involved in aerospace
design, which often require deep, domain-specific knowledge (Q. Zhu & Luo, 2023).
The absence of comprehensive and high-quality datasets for training further restricts
the LLMs’ ability to extend their learning to new or less common design tasks (Re-
genwetter et al., 2022). For aerospace applications, where designs often include novel
materials or innovative engineering approaches, the inability of LLMs to effectively
generalize or extend their capabilities can limit their usefulness.

Lack of Baselines
The absence of established baselines for comparing the performance of LLMs com-
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plicates the assessment of AI-generated designs (Q. Zhu & Luo, 2023). In aerospace,
where existing design methodologies are well-tested and validated, introducing AI
without clear benchmarks can create uncertainty about the reliability and quality
of design outputs.

Formalization of Engineering Design Dialogue
The ”black box” nature of LLMs makes it difficult to trace how design outputs
are derived, which is a significant issue in environments that demand high levels
of documentation and traceability (Beitz et al., 1996; Fricke, 1996). This opacity
is a barrier to certifying AI-assisted designs for actual implementation in aerospace
projects. Unlike simulations, which eliminate the modeling of uncertainty in the
output where a specific set of inputs can be re-run with the same results, an LLM
does not. An LLM does not generate the same output when re-runned based on
the same input, which is a significant issue within the context of aerospace where
results need to be 100% correct every time.

Interface and Integration Challenges
Many aerospace engineering tools do not support textual interfaces required by
current LLMs, limiting the integration of these AI models into existing software
ecosystems (Schick et al., 2023). The need for specialized interfaces can hinder the
adoption of LLMs in aerospace design processes, where seamless integration with
CAD tools and simulation software is crucial.

Skill and Representation Correlation
LLMs primarily process textual data and lack the capability to fully comprehend
spatial and physical processes that are vital in aerospace engineering (Fricke, 1996).
This limitation affects their ability to accurately model complex systems that rely
on a deep understanding of spatial dynamics and material properties.

Risk of Hallucinations
The propensity of LLMs to generate ”hallucinated” outputs—information that is
plausible but incorrect or unverifiable—poses a significant risk in aerospace design
(Alkaissi & McFarlane, 2023; Huh et al., 2023). The inaccuracies or fabrications
produced by LLMs could lead to flawed design decisions if not adequately vetted,
potentially compromising the safety and functionality of aerospace components.

Legal limitations and data secrecy
A major limitation is that AI at GKN cannot train on export-controlled or military
data. Consequently, many useful datasets necessary for robust concept development
are unavailable for training. This results in trained models lacking essential data,
potentially leading to non-useful outputs.

Although the interview study indicated that data could be anonymized before train-
ing, making it possible to train on export-controlled data, another respondent con-
tradicted this, making it difficult to draw a final conclusion. Further research on
this topic is needed.
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While LLMs offer potential benefits in automating and enhancing the aerospace
design process, these limitations highlight the need for cautious implementation.
Ensuring that AI tools like LLMs are used to complement, rather than replace, hu-
man expertise is crucial. Continued research and development into improving the
interpretability, reliability, and integration capabilities of LLMs will be essential to
mitigate these limitations and safely harness the power of AI in aerospace design.

Conclusion
There is not a way where LLMs can provide a complete design based on an input
of requirements and a prompt. However, LLMs have the possibility to enhance the
workflow in every iteration of the design process.

5.5.9 Sources of uncertainty and what may have affected
the result

This section reflects on the intricacies of the study and how these may have affected
the results.

5.5.9.1 LLMs in concept generation

Something that is important to note is that most of the research done when testing
LLMs (or GPTs) in concept generation and development applications is that they
have mainly focused on GPT-2 and GPT-3. This could be due to the rapid ad-
vancements in the releases of new GPT versions, and the time it takes to perform
a thorough study of the models. The current version ChatGPT uses is GPT-4 and
was released in March 14, 2023 (OpenAI, 2023). Given that GPT-3 is a LLM fea-
turing 175 billion parameters, which was a substantial scale-up from its predecessor,
GPT-2, which had 1.5 billion parameters.

Capabilities: GPT-3 made waves for its ability to generate coherent and contex-
tually relevant text across a variety of domains, often producing text that could be
indistinguishable from that written by a human. It is capable of understanding and
generating natural language or code from a prompt. GPT-4 further advances the
capabilities of its predecessors, offering significantly improved performance in gen-
erating text, better factual accuracy, and more nuanced understanding of complex
instructions.

Limitations: Despite its size and capabilities, GPT-3 sometimes generates plausible-
sounding but incorrect or nonsensical answers, a trait referred to as ”hallucination.”
Additionally, it can manifest biases present in the data it was trained on. While
GPT-4 scales up to about 2 trillion parameters, a substantial increase from GPT-3,
making it more powerful and capable of understanding and generating more com-
plex texts (OpenAI, 2023).

This version has been described as more reliable, with reduced tendencies to generate
incorrect information and an ability to handle more abstract and subtle tasks. It also
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demonstrates a better grasp of user intent and more detailed and specific outputs.
Based on the information above, one could argue that GPT-4 would offer better
results than GPT-3.

5.5.10 Literature synthesis concept generation
Saadi and Yang (2023b) mentions that computational tools in design can influence
the designer’s cognitive processes, their design exploration, and overall designs gen-
erated. This along with the study that considers AI in concept evaluation, and
a generative design process outlined by (Saadi & Yang, 2023b) gave inspiration
to create a process of our own. This, along with the results from the interviews,
which mapped the PDP and concept generation, has culminated in a comprehen-
sive process flow that incorporates AI/ML methods such as LLMs as a designer,
and generative designer tools. By integrating insights from concept generation and
evaluation, the authors of this report propose a design process that demonstrates
how AI/ML methods can aid in developing robust concept solutions. This proposed
process is illustrated in Figure 5.4.

Define Inputs: Objectives, Parameters, and Constraints: The generative
design process starts with defining objectives, parameters, and constraints. Objec-
tives are performance metrics, such as minimizing weight or maximizing stiffness.
Parameters include material properties, manufacturing methods, safety factors, and
loading conditions like forces and moments. Constraints are limiting conditions like
maximum weight and geometry restrictions.

Inputs come from user needs, customer requirements, or industry standards. Design-
ers use calculations and intuition to set initial values, such as estimating an upward
force using F=MA calculations and conservatively overshooting weight objectives
for strength. Tools may limit input types, some only allow force loads, not torques
or dynamic loads. While qualitative factors like aesthetics are not official objectives,
designers consider them subconsciously and adjust designs later to incorporate these
factors. The process involves refining inputs and using the generative design tool to
meet specified objectives, parameters, and constraints.

Creative reasoning, argumentative dialogue, ideation: In this stage, the idea
is that an AI-based method, such as a LLM trained on internal aerospace-specific
data and specific GKN designer data, could improve creative reasoning and thus the
output of concepts. Additionally, to ensure all aspects are considered, the process
would, in our estimation, become more effective and less time-consuming.

Evaluate and iterate: Designers evaluate generative design results through visual
inspection, analytical methods, and prototyping. Visual checks identify features
that don’t meet specifications. Analytical methods include graphing performance
comparisons and using finite element analysis (FEA) to find improvement areas.
Prototyping assesses comfort and usability, which screens can’t gauge.

Based on evaluations, designers iterate on constraints, parameters, and sometimes
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Figure 5.4: The design process illustrating how AI/ML methods can help propose
a robust design solution.

objectives, using experience, trial and error, or aesthetic goals. This iterative pro-
cess can involve many versions to achieve satisfactory results, sometimes up to 37
iterations. Time and computational resources often limit iterations (Saadi & Yang,
2023b).

Despite not fully understanding the tool’s final designs, designers trust their setup
and the tool’s capabilities, tweaking values to refine designs. After iterating, de-
signers manually select a final design from the generated set, balancing performance
metrics, manufacturability, aesthetics, and user satisfaction. For example, designers
might reject designs that don’t align with their intuition if they notice features that
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seem suspicious.

Designers may choose results based on different performance metrics not represented
in the tool, like the moment of inertia, or select lower-performance iterations to im-
prove manufacturability. Aesthetics can also influence the selection process, with
lower-performance designs sometimes preferred for their visual appeal.

Selection may also consider context-specific requirements, ensuring the design meets
user needs. This range allows the final user to choose the most appropriate geometry.

Designer Expertise: is crucial in the generative design process, influencing all
stages with their experience, knowledge, intuition, and understanding of users and
context. They define and iterate on objectives, parameters, and constraints, select
results, and refine the final design. Expertise in traditional CAD software, engineer-
ing, and manufacturing processes is essential to mastering generative design tools.

Designers set relevant objectives, parameters, and constraints at the beginning
stages. Their knowledge helps define variables and iterate through them. They
choose the best design based on quantitative and qualitative metrics like manufac-
turability and aesthetics. Designers translate user and context specifications into
tool-understandable parameters, combining their knowledge with the tool’s comput-
ing power to create optimized designs.

Qualitative Considerations: Generative design tools primarily handle quanti-
tative inputs, but qualitative considerations like aesthetics are crucial. Designers
influence aesthetics by defining starting geometries, creating a bounding box that
impacts the tool’s output. While current tools don’t accommodate direct aesthetic
inputs, designers find workarounds to ensure visual appeal. Some tools exploring
aesthetic designs are in development but not widely used (Saadi & Yang, 2023b).

Manufacturing and assembly considerations are also significant. Designers add con-
straints for assembly tools, like ensuring clearance for a screwdriver. These qualita-
tive factors greatly influence the generative design process outcomes.

Exploring and Understanding Design Space: A significant implicit output of
the generative design process is the designer’s enhanced understanding of the design
space. Through iterative processes, designers gain a deeper comprehension of the
design problem and potential solutions.

Designers view this process as a learning experience, building confidence and under-
standing by exploring different scenarios and questioning the tool’s outputs. This
trial-and-error approach helps them grasp the intricacies of the design problem bet-
ter. Initially, designers encounter a learning curve, identifying factors they initially
overlooked. This iterative learning helps them recognize and include all relevant
constraints, refining their understanding of the design problem and identifying key
constraints that drive the solution space.
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The generative design tool: outputs multiple designs that meet the specifica-
tions, providing designers with a comprehensive understanding of the solution space.
This breadth of potential solutions serves as valuable design guidance, unique to the
generative design process and not easily achieved through traditional methods.

Concept evaluation: The gradient color showing half grey, half green box sym-
bolises that while AI can help with concept evaluation they will always be overseen
by an designer in this stage. The AI will not evaluate concepts on its own, but only
provide the designer with information and basis for a decision.

Human bias mitigation: When evaluating concepts, this thesis holds the opinion
that there must be one concept that is objectively the best. However, subjectively,
another concept could be considered better. The main idea is that designers should
be provided with the grading of the objectively best concept, so that any potential
bias can be noticed during the evaluation stage.
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6
Conclusion and recommendations

GKN encounters various challenges in concept development, such as information
accessibility, data secrecy, time constraints, human factors, balancing demands, and
a conservative culture. AI/ML methods have the potential to aid in some of these
challenges. Addressing these issues through better data management, improved
team dynamics, and flexible processes, could help simplify AI/ML implementation.

Current AI/ML capabilities at GKN are in the early stages, with specific appli-
cations like design optimization showing promise. However, broader adoption is
limited by gaps in strategic direction, data quality, infrastructure, and regulatory
compliance concerns. Investments in IT infrastructure and AI/ML expertise would
be necessary to fully utilize these technologies.

Generative AI, design tools with integrated AI/ML methods, and LLMs can simplify
concept generation and evaluation, enhance creative reasoning, mitigate human bias,
and manage complexity and risk. However, to fully leverage these benefits, GKN
must facilitate AI-human collaboration to also capitalize on human strengths. AI
implementation is not about replacing humans but assisting in areas where human
capabilities are lacking.

We argue that a fine-tuned LLM, trained on internal and aerospace-specific data,
would enhance the robustness of concept solutions and streamline design processes
as well as non-cognitive tasks. This would aid in creative reasoning and ideation,
extend the designers knowledge and the design space, and mitigate bias in the eval-
uation of concepts. However, several prerequisites must be met before this can be
realized, including high data quality, robust infrastructure, adequate resources (both
human and machine), and strict data secrecy. Given these requirements, implement-
ing such a model in the near term appears unlikely.

To move towards this goal, we recommend establishing effective data governance
policies suitable for future model training. Additionally, there should be enterprise-
wide education about the capabilities and potential of AI/ML/LLMs. Moreover,
commercial generative design tools are making rapid advancements that can inde-
pendently streamline many processes. The primary challenge lies in the data sharing
between GKN and these tools.

Finally, we argue that by enhancing the knowledge space and, by extension, the
design space, AI/ML methods can help robust concept development. Generative
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AI, design tools with integrated AI/ML methods, and LLMs offer significant oppor-
tunities to simplify concept generation. LLMs can assist with ideation, creative rea-
soning, and offloading of cognitive and repetitive tasks. Fine-tuned LLMs, trained
on internal documentation, provide instant feedback on less complex tasks, help-
ing designers explore a broader design space, reduce bias, and enhance knowledge,
facilitating the development of robust design solutions.

6.1 Further work
This thesis might be considered a preliminary study on the potential of implement-
ing AI-based methods, such as LLMs, in early conceptual design work. Given that
it is a pre-study, all aspects covered in the thesis could be explored in greater depth.
For instance, keeping up with and monitoring the rapid advancements in AI is a
significant aspect.

Comparing AI implementation at the three benchmarking organizations to where
GKN currently stands, it is complex to decipher whether GKN is ahead or behind.
However, what it shows is that AI is on all three organizations radar, building
an incentive to further investigate how AI actually can be implemented into the
organization. While GKN is looking into AI implementation, this should create an
urge to further identify ways in which GKN can benefit from this technology.
We recommend that the next step would be to fine-tune an LLM with aerospace-
specific and internal data and assess its performance in creative reasoning, ideation,
and concept evaluation during concept development.
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A
Appendix

A.1 Internal Interview Questions - Product De-
velopment Processes

I



Introduction Questions:
1. Would it be okay to record this interview?
2. Would you like to be anonymous?
3. What is your role at GKN?
4. How long have you been working with your current title? Current position?
5. What tasks are included in your position?
6. How long have you worked at GKN in total?
7. What is your experience within product development, concept development and

concept evaluation?
8. How long have you worked within that field?

OMS:

1. OMS divides product development into four major phases: Conceptual Design,
Preliminary Design, Detailed Design, and Final Design. Does it feel obvious in which
process each type of work belongs?

2. Do you feel comfortable working with concept development?
a. What challenges do you see in working with concept development?

3. Hur gör vi om vi behöver omtag på ett koncept i “preliminary design” exempelvis,
eller senare i processen? Vart vänder vi oss isf? Concept design?

PD methods:
1. What part of the product development process are you most familiar with?
2. What conventional methods are used for concept generation and evaluation at GKN?
3. Is the process always the same or do different programs have different conventional

methods?
4.
5. What are the current praxis for decision making in these processes?
6. In your experience, which tasks are the most decision-heavy?
7. What do you think are the greatest obstacles in the concept generation and

evaluation process at GKN?
8. In the product development process in general, in your experience, what are the

greatest challenges you face?
9. What processes are regularly the most time consuming?
10. Is there a consensus around “best practice”?
11. What (data)programs are utilized for these processes?
12. Have you previously made big changes to your product development process? Did

you learn something from that?
13. In the concept-choice-matrix, how do you decide upon the “weighting”? Is the

weighting the same? If not, how long is the process of deciding upon weightings?
Who is deciding?

Robustness & Zero defects:

1. In which of the phases mentioned in OMS are robustness and zero defects most
considered in your experience? Does it clearly focus on one more than another?

2. How do you work with ZD in concept development?
3. How do you work with ZD in concept evaluation?

A. Appendix

II



4. How do you work with robustness in concept development?
5. How do you work with robustness in concept evaluation?

Basis of decision-making:
1. How are decisions in the PD processes made?
2. What information lays the basis of decision making?
3. Could you rank the most influential factors that lay the basis of a major decision?
4. How much previous information from projects and lessons learned is utilized in new

projects? If so, is this documented?
5. How much are “internal documents” used when making decisions?
6. Do you find it easy finding the information you need?
7. Is it common that you do not find the information you need?
8. How much time is spent on finding the specific resources you need to make a certain

decision (in terms of documentation).

AI:

1. What conventional methods could you see being automated in the future?
2. What processes could you see would benefit from the incorporation of AI/ML?
3. If you were to rank which methods, processes, or decisions could be made by AI

what would they be?
4. Are there any obvious activities that you feel could be more effective if you could use

a tool like ChatGPT?

End of interview:

In the theme of the questions we have asked you, is there something major we have missed
or something you would like to add?
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A.2 Internal Interview Questions - AI and ML

IV



Introduction Questions:
1. Would it be okay to record this interview?
2. Would you like to be anonymous?
3. What is your role at GKN?
4. How long have you been working with your current position?
5. What tasks are included in your position?
6. How long have you worked at GKN in total?
7. What is the short term plan for AI/ML at GKN?
8. How long have you worked within that field?

OMS:

1. Where can you find your ways of working in OMS?
2. Which “phases” within OMS do you primarily work within?
3. Does it feel obvious in which process -of you ways of working- each type of work

belongs?

AI methodology:

1. In general, how much is AI/ML considered currently at GKN to your knowledge?
2. How far has GKN come in integrated data science in their ways of working?
3. What AI/ML initiatives do we currently have at GKN?
4. Are you aware of other projects in GKN where AI/ML is being used?
5. What is your area of expertise?

Data collection:
1. How is different data collected?
2. Manually or automatically?
3. How is data reported manually?

Opportunities:

1. In your specific area, what is considered to be the next big thing?
2. What does your work wish to achieve within the company in the long run?
3. What opportunities in general do you see with incorporating data science,

AI/ML:

1. What conventional methods could you see being automated in the future?
2. What processes could you see would benefit from the incorporation of AI/ML?
3. If you were to rank which methods, processes, or decisions could be made by AI

what would they be?
4. What types of AI do you see would benefit these “insert specific problems”? (LLM,

Regression, etc)
5. In the PD process, what types of models, programs, etc could you see generate

(specific).
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6. How can tools from AI and ML can be used to simplify concept generation, evaluation
and to propose a robust design solution?

Integration:

1. What would you say are the greatest challenges that come with integrating AI/ML into
these processes?

2. In contrast, what kind of processes could face the least amount of challenges when
integrating?

3. Would the training of models need to be conducted in-house?
4. If the training would be outsourced on general aerospace data, not company specific

data, could this still be beneficial or would it be much worse than a model trained on
company specific data?

5. What would need to be in place at the Trollhättan site in order for an integration of
this kind to work. (server centers, programs, PLM systems, OMS, etc).

6. Based on the previous questions, is there something obvious we have missed to
consider when it comes to integration?

7. What would you say that AI is in terms of TRL at GKN?

AI implementation wishes from PD interviews, what are your thoughts about them?
How could these be implemented? What are the challenges?
Report writing
Search engine for documents quickly
Document sorting
Powerpoint generation
Patent search and guidance
Defect detection decision making,
Programing
Bought in LLM that is trained by experienced people (supervised learning)
CAD drawings
Ritningsgranskning
A “black box” where you input parameters at an early design phase and it generates a
correct output after manufacturing
To generate aero-calculations. A system that computes 10 000 solutions of how Stator 1
could look based on a variation of parameters to gain a sweet spot.

End of interview:
In the theme of the questions we have asked you, is there something major we have missed
or something you would like to add?
Is there a person you feel that could answer our questions well?
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A.3 External Interview Questions
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Interviewing questions - External benchmarking
Introduction
Would it be okay to record this interview?
Would you like to be anonymous?
What is your role at this company?
How long have you been working with your current title?
What tasks are included in your position?
How long have you worked at Company in total?
What is your experience within product development, concept development and concept
evaluation?
How long have you worked within that field?

Are you working with AI?
If yes:
How is AI currently being integrated into your PD processes?
Is AI used for concept generation, concept evaluation? How is it used?
What conventional methods have been integrated with AI?

What are key drivers for adopting AI into your operation?

What metrics do you use to measure the success and impact of AI integration?
- Can you provide tangible benefits or improvements resulting from AI implementation?

What challenges have you faced when integrating AI?
How did you overcome these challenges?

What skills or expertise are required for managing and deploying AI technologies within your
organization?

- How can you ensure your workforce is equipped with the necessary skills for AI
integration?

How can you ensure the quality, reliability of data used for AI applications?

How is AI taken into consideration in regards to, safety, security and handling classified
information?

- Do you store data in cloudservices?
Are models outsourced or developed in-house?
How is the infrastructure currently at [your company]?

What are future plans for expanding the use of AI within your company’s operations?

If no:
Why not?
What factors have made you reluctant towards AI integration?

A. Appendix

VIII



AI in general:
In general, how much is AI/ML considered currently at your company to your knowledge?
How far has your company come in integrated data science in their ways of working?
What conventional methods could you see being automated in the future?
What processes could you see would benefit from the incorporation of AI/ML?
If you were to rank which methods, processes, or decisions could be made by AI what would
they be?
How has AI improved your ways of working? How much has efficiency increased?
Do you have insight into how other companies are working with AI?

End of interview:
In the theme of the questions we have asked you, is there something major we have missed
or something you would like to add?

Thank you
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A.4 Technology Readiness Level
The Technology Readiness Level (TRL) is a crucial aspect when discussing the im-
plementation of new initiatives within a corporation, particularly in the aerospace
industry.

TRL was first introduced by Mankins et al. (1995) in 1995 and is a systematic
measurement system that explains the maturity of a specific technology and facili-
tates the comparison of maturity between different types of technology. The TRL
approach has been employed in NASA’s space technology planning for many years
and was incorporated into the NASA Management Instruction (NMI 7100) in the
1990s, addressing integrated technology planning at NASA (Mankins et al., 1995).
Essentially, TRL helps in understanding how close a particular technology is to
being ready for practical use or implementation.
TRL ranges from levels 1-9, and each level will be explained in the table below:

• TRL 1: Basic principles observed and reported
At level one, research begins and gets translated into applicable research and
development (R&D). Examples of studies are tensile strength of a material.
Cost to Achieve: Very Low ‘Unique’ Cost

• TRL 2: Technology concept and/or application formulated
When information of physical principles have been gathered, practical applica-
tions of these characteristics can be identified. An example is the observation
of high critical temperature (Htc) superconductivity can be defined. At level
two, the application of the concept is still speculative.
Cost to Achieve: Very Low ‘Unique’ Cost

• TRL 3: Analytical and experimental critical function and/or char-
acteristic proof-of concept
Active R&D begins at this stage, involving analytical studies to position the
technology within suitable contexts. Laboratory studies are conducted to vali-
date the analytical predictions formed. These studies aim to construct ’proof-
of-concept’ validation for the concepts created at TRL 2.
To illustrate, consider a concept for High Energy Density Matter (HEDM)
propulsion, which may rely on slush or super-cooled hydrogen as a propel-
lant. TRL 3 is achieved when the laboratory attains the concept-enabling
phase/temperature/pressure for the fluid.
Cost to Achieve: Low ’Unique’ Cost (technology-specific).

• TRL 4: Component and/or breadboard validation in laboratory en-
vironment
After successfully proving the concept, it’s essential to integrate basic tech-
nological elements to ensure that the components work together to achieve
concept-enabling performance levels for a component or breadboard. This
validation must be designed to support the earlier formulated concept and
align with the requirements of potential system applications. The validation
is relatively low-fidelity compared to the eventual system.
For example, at TRL 4, testing a new ’fuzzy logic’ approach for avionics could
involve trying out the algorithms in a controlled environment like a lab. This
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includes using simulated vehicle inputs and demonstrating it with a combina-
tion of computer-based and bench-top components (e.g., fiber optic gyros).
Cost to Achieve: Low-to-moderate ‘Unique’ Cost (investment will be tech-
nology specific, but probably several factors greater than investment required
for TRL 3)

• TRL 5: Component and/or breadboard validation in relevant envi-
ronment
At this stage, the testing of the component requires a significant increase in
accuracy. Basic technological elements need to be integrated with reason-
ably realistic supporting elements. This allows testing the total applications
(component-level, sub-system level, or system-level) in a ’simulated’ or some-
what realistic environment. The demonstration may involve one or several
new technologies.
For instance, a new type of solar photovoltaic material, promising higher ef-
ficiencies, would be used in an actual fabricated solar array. This solar array
is integrated with power supplies, supporting structure, etc., and tested in a
thermal vacuum chamber with solar simulation capability.
Cost to Achieve: Moderate ‘Unique’ Cost (investment cost will be technol-
ogy dependent, but likely to be several factors greater that cost to achieve
TRL 4)

• TRL 6: System/subsystem model or prototype demonstration in a
relevant environment (ground or space)
After TRL 5, there’s a significant leap in technology demonstration accuracy
at TRL 6. Here, a model or prototype system is tested in a relevant environ-
ment. If space is the relevant environment, the model or prototype must be
demonstrated in space to be considered a true TRL 6. Not all technologies
undergo a TRL 6 demonstration; at this stage, the main focus is on ensuring
management confidence rather than meeting R&D requirements.
The demonstration may represent an actual system application or be similar
to the planned application, using the same technologies. At TRL 6, several
to many new technologies may be integrated into the demonstration. For
example, an innovative component on a Space Shuttle could be demonstrated
to TRL 6 by flying a working, sub-scale (but scalable) model on a Space
Shuttle. In this case, space is the relevant environment because microgravity,
vacuum, and thermal effects will determine the success or failure of the system,
and the only way to validate the technology is in space.
Cost to Achieve: Technology and demonstration specific; a fraction of TRL
7 if on ground; nearly the same if space is required.

• TRL 7: System prototype demonstration in a space environment
TRL 7 is a crucial advancement beyond TRL 6, necessitating a prototype
demonstration of the actual system in a space environment. While not always
implemented in the past, in this case, the prototype should closely match the
scale of the planned operational system, and the demonstration must occur
in space. Not all technologies and systems will reach this level, and TRL 7
is typically reserved for mission-critical and relatively high-risk technology or
subsystem applications. For instance, the Mars Pathfinder Rover serves as a
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TRL 7 technology demonstration for future Mars micro-rovers based on its
system design.
Cost to Achieve: Technology and demonstration specific, but a significant
fraction of the cost of TRL 8

• TRL 8: Actual system completed and “flight qualified” through test
and demonstration (ground or space)
By definition, all technologies incorporated into operational systems undergo
TRL 8. In most instances, this level marks the conclusion of authentic ’system
development’. For instance, successfully loading and testing a new control
algorithm into the onboard computer on the Hubble Space Telescope while in
orbit.
Cost to Achieve: Mission specific; typically highest unique cost for a new
technology

• TRL 9: Actual system “flight proven” through successful mission
operations
All technologies implemented in actual systems undergo TRL 9. In most
cases, this represents the final stages of addressing the last ’bug fixing’ aspects
in true ’system development.’ For example, making small fixes or changes
to address problems discovered after launch. This could involve integrating
new technology into an existing system, such as incorporating a new artificial
intelligence tool into operational mission control.
Cost to Achieve: Mission Specific; less than cost of TRL 8.

A.4.1 Design Space Exploration
Design Space Exploration (DSE), as defined in (Kang et al., 2011), is the process of
evaluating various design options before their actual implementation. DSE is crucial
for many engineering activities such as rapid prototyping, optimization, and system
integration due to its capability to manipulate a wide range of possible solutions.
DSE is used at GKN Aerospace Sweden currently, and is an available ML tool. A
major challenge in DSE is the sheer size of the design space, which could include
millions or billions of alternatives, making a complete exploration impractical.
Given the cost constraints, not all possible solutions can be practically tested. It
is critical, therefore, for the DSE process to be as efficient as possible. (Kang et
al., 2011) introduces an effective DSE framework composed of three fundamental
components:

• Representation: Essential for automated analysis, this involves a formal
representation of the design space that captures complex constraints, including
arithmetic, Boolean, and data type constraints.

• Analysis: This requires automated tools for identifying and validating poten-
tial solutions against these constraints, while also efficiently managing compu-
tational costs.

• Exploration Method: Post-optimization, this component aids in the explo-
ration of unique design candidates, steering clear of arbitrary enumeration of
possibilities.

According to the authors, a solution is considered noteworthy if it differs significantly
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from previously explored solutions, based on a user-defined criterion of equivalence.
Two solutions are equivalent if they have isomorphic mathematical representations.
The FORMULA framework, detailed in (Jackson & Sztipanovits, 2009; Jackson et
al., 2009), specifies domain-specific languages (DSLs) for modeling design spaces.
DSLs are instrumental in formally representing and enforcing constraints within
these spaces, making them ideal for handling complex design configurations. FOR-
MULA leverages DSL composition, facilitated by the Z3 SMT solver (de Moura &
Bjørner, 2008), to simplify complex design areas into manageable components.
Representation: In FORMULA, a domain block contains the DSL’s data types
and constraints (Jackson et al., 2010), including various types like simple sorts,
record constructors, and unions.
Analysis: FORMULA enhances automated model validation against domain con-
straints using constraint logic programming (CLP), which is a simpler alternative
to the more complex object constraint language (OCL) (Kang et al., 2011).
Exploration Method: The framework employs a ”conforms” query to ensure that
models meet all specified constraints, defining the design spaces accordingly.
Modularity and Composition: FORMULA supports modular DSL design that
allows for the expansion and combination of various domains, thus facilitating con-
sistent enforcement of constraints.
In essence, FORMULA utilizes formal abstractions and DSLs, enhanced by CLP and
modular composition, to manage and navigate complex design spaces effectively.
Solving for Instances: FORMULA converts design specifications into queries for
the Z3 SMT solver. Each domain query (D.q) is transformed into a first-order logic
formula ([X]), representing models as sets of records that align with the satisfying
instances of the formula.
Z3 combines decision procedures across different theories and SAT-based techniques
to search for solutions efficiently. The process handles complex queries, such as
aggregating the capacities of incoming channels to a device, involving computations
with term algebras and linear arithmetic.
FORMULA’s translation of models to SMT queries is intricate as it predominantly
supports existential logic. By symbolically executing the specifications over sym-
bolic inputs, FORMULA generates a quantifier-free version of the logic, representing
various potential configurations within the design space.
Design Space Exploration Method After symbolic execution, FORMULA iden-
tifies design space elements via the Z3 solver. To effectively find diverse solutions,
a technique that groups similar solutions through isomorphisms over algebraic data
types is employed.
Projection-Based Equivalence Partitioning introduces a function known as
term homomorphism, which alters constants within records while preserving their
structure. This function groups isomorphic models into a single equivalence class,
significantly streamlining the exploration process.
Exploration Algorithms: FORMULA utilizes algorithms like ExploreII to op-
timize the search process, preventing revisits to non-productive areas by learning
from past explorations.
This thorough exploration is essential for efficiently navigating through complex de-
sign spaces, especially those with stringent constraints, ensuring a broader array of
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potential solutions is considered.
Evaluation
The performance of two algorithms, Explore and ExploreII, is assessed based on
their effectiveness in distributing solutions throughout a design space. We utilize
a compact generator set to map the entire space, modifying the model to simplify
the number of equivalence classes. The configuration involves defined tasks, devices,
conflicts, channels, and bindings, shaping the potential equivalence classes. During
testing, each algorithm was restricted to 100 invocations of the SMT solver, with
graphical representations illustrating the outcomes. These visualizations depict the
explored regions and the adequacy of solutions, using colors to indicate successful
and unsuccessful areas.
Randomization
The performance of the algorithms is evaluated in various design spaces, focusing
on their ability to sample equivalence classes uniformly without bias. Challenges
included balancing random sampling against the computational expense of gener-
ating non-isomorphic samples. A refined sampling algorithm significantly reduced
bias, enhancing cost-efficiency in design spaces with complex symmetries.
Highly Constrained Design Spaces
In tightly constrained spaces, clustering of non-isomorphic solutions challenges ef-
fective random sampling. A probability parameter to balance randomly selected
samples and those driven by the solver is introduced. Experimental results demon-
strate how different pgen settings impact the distribution and discovery of solutions,
highlighting the trade-offs between diversity and efficiency in solution discovery.
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